6,657 research outputs found

    Local Energy Efficiency Interventions by the Prioritization of Thermal Zones in an Historical University Building

    Get PDF
    Architectural constraints are a crucial aspect in energy retrofitting of historic buildings. Usual global interventions are often not allowed since preserving historical values of the building stock is mandatory. In this paper, the authors provide an alternative procedure by identifying the most profitable local interventions in order to maintain the architectural values during the restoration and energy retrofitting operations. So, thermal zones prioritization is the key element considered in this study. Its aim is to analyse which energy efficiency measures could be applied to a listed building, but at certain technological elements rather than a unique choice for the entire building envelope. Thus it will prove that you can work with individual elements of the building without compromising the protection of architectural good. The attention was placed in promoting single measures and improving the quality of the built environment. The case study is an historical building in Rome, currently used for university purposes. The analysis was carried out through a building simulation model so that to assess the building energy performance before and after the selected interventions. The chosen software is TRNSYS. This approach shows how interventions, usually not applicable at the building scale, would be beneficial if applied at local scale such as a single thermal zone or a single technological unit. The authors built a reference scenario and, for each identified thermal zone, tested the energy efficiency improvement in terms of heating demand reduction coming from the hypothesized local intervention

    Rural electrification in central america and east africa, two case studies of sustainable microgrids

    Get PDF
    This paper deals with the electrification of rural villages in developing countries using Sustainable Energy Systems. The rural electrification feasibility study is done using Hybrid Optimization Model for Electric Renewable PRO (HOMER PRO). The HOMER PRO energy modelling software is an optimization software improved by U.S. National Renewable Energy Laboratory. It helps in designing, comparing and optimizing the design of power generation technologies. In this paper, two rural electrification case studies are modelled and analysed using HOMER PRO. Technical and economic evaluation criteria are applied to study the feasibility of a micro-hydro plant in El Díptamo (Honduras), and a hybrid plant composed of photovoltaic module arrays, Diesel generators, and flow batteries, in a small island on Victoria Lake. For both cases, we show the results of the studies of the daily and yearly loads, of the resources available in the area and the economic evaluation of the chosen plants configuration

    Recent developments in solar energy-harvesting technologies for building integration and distributed energy generation

    Get PDF
    We present a review of the current state of the field for a rapidly evolving group of technologies related to solar energy harvesting in built environments. In particular, we focus on recent achievements in enabling the widespread distributed generation of electric energy assisted by energy capture in semi-transparent or even optically clear glazing systems and building wall areas. Whilst concentrating on recent cutting-edge results achieved in the integration of traditional photovoltaic device types into novel concentrator-type windows and glazings, we compare the main performance characteristics reported with these using more conventional (opaque or semi-transparent) solar cell technologies. A critical overview of the current status and future application potential of multiple existing and emergent energy harvesting technologies for building integration is provided

    Improving sustainability of energy intensive sectors through multi-objective models

    Get PDF
    openGlobal energy consumption and the related carbon dioxide emissions, which represent a large share of the overall anthropogenic greenhouse gas production, are continuously increasing since most of the energy needs are still provided by fossil fuels, thus constituting one of the main issues to be addressed in the climate change mitigation agenda. To achieve the Paris Agreement’s ambitious objectives, an energy transition towards sustainable energy systems based on the new smart energy system (SES) paradigm is needed, thus integrating the various energy sources, vectors and needs within the sectors (electricity, heating, cooling, transport, etc.). However, optimal planning, design and management of complex integrated systems such as SES require to make use of proper decision support models based on multi-objective optimization techniques, since a sustainability analysis intrinsically involves environmental, economic and social aspects. Furthermore, a SES project involves several stakeholders, each driven by different and often conflicting objectives, which should be considered within such models, to remove some relevant barriers to the energy transition. Focusing on the improvement of the sustainability of the energy-intensive sectors, the main objective of this thesis is thus the development of a decision support framework based on multi-objective optimization with the aim to support the decision makers in the planning, design and management of integrated smart energy systems, while considering the different involved stakeholders. The proposed model, composed by three main phases (namely investigative, design and decision-making), has been developed by steps via its application on case studies belonging to two main topics concerning the improvement of the sustainability performance of energy-intensive sectors through the implementation of the smart energy system concept. The first main topic is representative of the context of industrial districts and concerns their sustainable energy supply based on technical solutions specifically designed for cluster of firms, allowed by geographical proximity. The other one concerns the synergic integration between industrial and urban areas, through the recovery of waste energy from industrial processes to feed municipal district heating with a carbon-free source. The case studies have been selected, within the opportunities available in the local territorial context, not only because fit for the implementation of the smart energy system concept, but also due to their suitability for the implementation of different phases of the proposed decision support system (DSS).Dottorato di ricerca in Scienze dell'ingegneria energetica e ambientaleopenCiotti, Gelli

    IoT software infrastructure for Energy Management and Simulation in Smart Cities

    Get PDF
    This paper presents an IoT software infrastructure that enables energy management and simulation of new control policies in a city district. The proposed platform enables the interoperability and the correlation of (near-)real-time building energy profiles with environmental data from sensors as well as building and grid models. In a smart city context, this platform fulfills i) the integration of heterogeneous data sources at building and district level, and ii) the simulation of novel energy policies at district level aimed at the optimization of the energy usage accounting also for its impact on building comfort. The platform has been deployed in a real world district and a novel control policy for the heating distribution network has been developed and tested. Results are presented and discussed in the paper

    Energy and Smart Growth: It's about How and Where We Build

    Get PDF
    By efficiently locating development, smarter growth land use policies and practices offer a viable way to reduce U.S. energy consumption. Moreover, by increasing attention on how we build, in addition to where we build, smart growth could become even more energy smart. The smart growth and energy efficiency movements thus are intrinsically linked, yet these two fields have mostly operated in separate worlds. Through greater use of energy efficient design, and renewable energy resources, the smart growth movement could better achieve its goals of environmental protection, economic security and prosperity, and community livability. In short, green building and smart growth should go hand in hand. Heightened concern about foreign oil dependence, climate change, and other ill effects of fossil fuel usage makes the energy-smart growth collaboration especially important. Strengthening this collaboration will involve overcoming some hurdles, however, and funders can play an important role in assisting these movements to gain strength from each other. This paper contends there is much to be gained by expanding the smart growth movement to include greater attention on energy. It provides a brief background on current energy trends and programs, relevant to smart growth. It then presents a framework for understanding the connections between energy and land use which focuses on two primary issues: how to build, which involves neighborhood and building design, and where to build, meaning that location matters. The final section offers suggestions to funders interesting in helping accelerate the merger of these fields
    • …
    corecore