69,472 research outputs found

    A methodology for full-system power modeling in heterogeneous data centers

    Get PDF
    The need for energy-awareness in current data centers has encouraged the use of power modeling to estimate their power consumption. However, existing models present noticeable limitations, which make them application-dependent, platform-dependent, inaccurate, or computationally complex. In this paper, we propose a platform-and application-agnostic methodology for full-system power modeling in heterogeneous data centers that overcomes those limitations. It derives a single model per platform, which works with high accuracy for heterogeneous applications with different patterns of resource usage and energy consumption, by systematically selecting a minimum set of resource usage indicators and extracting complex relations among them that capture the impact on energy consumption of all the resources in the system. We demonstrate our methodology by generating power models for heterogeneous platforms with very different power consumption profiles. Our validation experiments with real Cloud applications show that such models provide high accuracy (around 5% of average estimation error).This work is supported by the Spanish Ministry of Economy and Competitiveness under contract TIN2015-65316-P, by the Gener- alitat de Catalunya under contract 2014-SGR-1051, and by the European Commission under FP7-SMARTCITIES-2013 contract 608679 (RenewIT) and FP7-ICT-2013-10 contracts 610874 (AS- CETiC) and 610456 (EuroServer).Peer ReviewedPostprint (author's final draft

    Predicting topology propagation messages in mobile ad hoc networks: The value of history

    Get PDF
    This research was funded by the Spanish Government under contracts TIN2016-77836-C2-1-R,TIN2016-77836-C2-2-R, and DPI2016-77415-R, and by the Generalitat de Catalunya as Consolidated ResearchGroups 2017-SGR-688 and 2017-SGR-990.The mobile ad hoc communication in highly dynamic scenarios, like urban evacuations or search-and-rescue processes, plays a key role in coordinating the activities performed by the participants. Particularly, counting on message routing enhances the communication capability among these actors. Given the high dynamism of these networks and their low bandwidth, having mechanisms to predict the network topology offers several potential advantages; e.g., to reduce the number of topology propagation messages delivered through the network, the consumption of resources in the nodes and the amount of redundant retransmissions. Most strategies reported in the literature to perform these predictions are limited to support high mobility, consume a large amount of resources or require training. In order to contribute towards addressing that challenge, this paper presents a history-based predictor (HBP), which is a prediction strategy based on the assumption that some topological changes in these networks have happened before in the past, therefore, the predictor can take advantage of these patterns following a simple and low-cost approach. The article extends a previous proposal of the authors and evaluates its impact in highly mobile scenarios through the implementation of a real predictor for the optimized link state routing (OLSR) protocol. The use of this predictor, named OLSR-HBP, shows a reduction of 40–55% of topology propagation messages compared to the regular OLSR protocol. Moreover, the use of this predictor has a low cost in terms of CPU and memory consumption, and it can also be used with other routing protocols.Peer ReviewedPostprint (published version

    Automatic detection of accommodation steps as an indicator of knowledge maturing

    Get PDF
    Jointly working on shared digital artifacts – such as wikis – is a well-tried method of developing knowledge collectively within a group or organization. Our assumption is that such knowledge maturing is an accommodation process that can be measured by taking the writing process itself into account. This paper describes the development of a tool that detects accommodation automatically with the help of machine learning algorithms. We applied a software framework for task detection to the automatic identification of accommodation processes within a wiki. To set up the learning algorithms and test its performance, we conducted an empirical study, in which participants had to contribute to a wiki and, at the same time, identify their own tasks. Two domain experts evaluated the participants’ micro-tasks with regard to accommodation. We then applied an ontology-based task detection approach that identified accommodation with a rate of 79.12%. The potential use of our tool for measuring knowledge maturing online is discussed
    corecore