1,434 research outputs found

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    Gait Analysis of Horses for Lameness Detection with Radar Sensors

    Get PDF
    This paper presents the preliminary investigation of the use of radar signatures to detect and assess lameness of horses and its severity. Radar sensors in this context can provide attractive contactless sensing capabilities, as a complementary or alternative technology to the current techniques for lameness assessment using video-graphics and inertial sensors attached to the horses' body. The paper presents several examples of experimental data collected at the Weipers Centre Equine Hospital at the University of Glasgow, showing the micro- Doppler signatures of horses and preliminary results of their analysis

    Magnetic and radar sensing for multimodal remote health monitoring

    Get PDF
    With the increased life expectancy and rise in health conditions related to aging, there is a need for new technologies that can routinely monitor vulnerable people, identify their daily pattern of activities and any anomaly or critical events such as falls. This paper aims to evaluate magnetic and radar sensors as suitable technologies for remote health monitoring purpose, both individually and fusing their information. After experiments and collecting data from 20 volunteers, numerical features has been extracted in both time and frequency domains. In order to analyse and verify the validation of fusion method for different classifiers, a Support Vector Machine with a quadratic kernel, and an Artificial Neural Network with one and multiple hidden layers have been implemented. Furthermore, for both classifiers, feature selection has been performed to obtain salient features. Using this technique along with fusion, both classifiers can detect 10 different activities with an accuracy rate of approximately 96%. In cases where the user is unknown to the classifier, an accuracy of approximately 92% is maintained

    Animal lameness detection with radar sensing

    Get PDF
    Lameness is a significant problem for performance horses and farmed animals, with severe impact on animal welfare and treatment costs. Lameness is commonly diagnosed through subjective scoring methods performed by trained veterinary clinicians, but automatic methods using suitable sensors would improve efficiency and reliability. In this paper, we propose the use of radar micro-Doppler signatures for contactless and automatic identification of lameness, and present preliminary results for dairy cows, sheep, and horses. These proof-of-concept results are promising, with classification accuracy above 85% for dairy cows, around 92% for horses, and close to 99% for sheep

    Edge Artificial Intelligence for Real-Time Target Monitoring

    Get PDF
    The key enabling technology for the exponentially growing cellular communications sector is location-based services. The need for location-aware services has increased along with the number of wireless and mobile devices. Estimation problems, and particularly parameter estimation, have drawn a lot of interest because of its relevance and engineers' ongoing need for higher performance. As applications expanded, a lot of interest was generated in the accurate assessment of temporal and spatial properties. In the thesis, two different approaches to subject monitoring are thoroughly addressed. For military applications, medical tracking, industrial workers, and providing location-based services to the mobile user community, which is always growing, this kind of activity is crucial. In-depth consideration is given to the viability of applying the Angle of Arrival (AoA) and Receiver Signal Strength Indication (RSSI) localization algorithms in real-world situations. We presented two prospective systems, discussed them, and presented specific assessments and tests. These systems were put to the test in diverse contexts (e.g., indoor, outdoor, in water...). The findings showed the localization capability, but because of the low-cost antenna we employed, this method is only practical up to a distance of roughly 150 meters. Consequently, depending on the use-case, this method may or may not be advantageous. An estimation algorithm that enhances the performance of the AoA technique was implemented on an edge device. Another approach was also considered. Radar sensors have shown to be durable in inclement weather and bad lighting conditions. Frequency Modulated Continuous Wave (FMCW) radars are the most frequently employed among the several sorts of radar technologies for these kinds of applications. Actually, this is because they are low-cost and can simultaneously provide range and Doppler data. In comparison to pulse and Ultra Wide Band (UWB) radar sensors, they also need a lower sample rate and a lower peak to average ratio. The system employs a cutting-edge surveillance method based on widely available FMCW radar technology. The data processing approach is built on an ad hoc-chain of different blocks that transforms data, extract features, and make a classification decision before cancelling clutters and leakage using a frame subtraction technique, applying DL algorithms to Range-Doppler (RD) maps, and adding a peak to cluster assignment step before tracking targets. In conclusion, the FMCW radar and DL technique for the RD maps performed well together for indoor use-cases. The aforementioned tests used an edge device and Infineon Technologies' Position2Go FMCW radar tool-set

    A Review of Indoor Millimeter Wave Device-based Localization and Device-free Sensing Technologies and Applications

    Full text link
    The commercial availability of low-cost millimeter wave (mmWave) communication and radar devices is starting to improve the penetration of such technologies in consumer markets, paving the way for large-scale and dense deployments in fifth-generation (5G)-and-beyond as well as 6G networks. At the same time, pervasive mmWave access will enable device localization and device-free sensing with unprecedented accuracy, especially with respect to sub-6 GHz commercial-grade devices. This paper surveys the state of the art in device-based localization and device-free sensing using mmWave communication and radar devices, with a focus on indoor deployments. We first overview key concepts about mmWave signal propagation and system design. Then, we provide a detailed account of approaches and algorithms for localization and sensing enabled by mmWaves. We consider several dimensions in our analysis, including the main objectives, techniques, and performance of each work, whether each research reached some degree of implementation, and which hardware platforms were used for this purpose. We conclude by discussing that better algorithms for consumer-grade devices, data fusion methods for dense deployments, as well as an educated application of machine learning methods are promising, relevant and timely research directions.Comment: 43 pages, 13 figures. Accepted in IEEE Communications Surveys & Tutorials (IEEE COMST

    A Contactless Health Monitoring System for Vital Signs Monitoring, Human Activity Recognition and Tracking

    Get PDF
    Integrated sensing and communication technologies provide essential sensing capabilities that address pressing challenges in remote health monitoring systems. However, most of today’s systems remain obtrusive, requiring users to wear devices, interfering with people’s daily activities, and often raising privacy concerns. Herein, we present HealthDAR, a low-cost, contactless, and easy-to-deploy health monitoring system. Specifically, HealthDAR encompasses three interventions: i) Symptom Early Detection (monitoring of vital signs and cough detection), ii) Tracking & Social Distancing, and iii) Preventive Measures (monitoring of daily activities such as face-touching and hand-washing). HealthDAR has three key components: (1) A low-cost, low-energy, and compact integrated radar system, (2) A simultaneous signal processing combined deep learning (SSPDL) network for cough detection, and (3) A deep learning method for the classification of daily activities. Through performance tests involving multiple subjects across uncontrolled environments, we demonstrate HealthDAR’s practical utility for health monitoring

    Representation of Radar Micro-Dopplers Using Customized Dictionaries

    Get PDF
    Human motions give rise to frequency modulations, known as micro-Dopplers, to continuous wave radar signals. Micro-Doppler signals have been extensively researched for the classification of different types of human motions as well as to distinguish humans from other moving targets. However, there are two main scenarios where the performance of existing algorithms deteriorates significantly—one, when the channel consists of multiple moving targets resulting in distorted signatures, and two, when the systems conditions during the training stage deviate significantly from the conditions during the test stage. In this chapter, it is demonstrated that both of these limitations can be overcome by representing the radar data through customized dictionaries, fine-tuned to provide sparser representations of the data, than traditional data-independent dictionaries such as Fourier or wavelets. The performances of the algorithms are evaluated with both simulated and measured radar data gathered from moving humans in indoor line-of-sight conditions

    People counting using multistatic passive WiFi radar with a multi-input deep convolutional neural network

    Get PDF
    Accurately counting numbers people is useful in many applications. Currently, camera-based systems assisted by computer vision and machine learning algorithms represent the state-of-the-art. However, they have limited coverage areas and are prone to blind spots, obscuration by walls, shadowing of individuals in crowds, and rely on optimal positioning and lighting conditions. Moreover, their ability to image people raises ethical and privacy concerns. In this paper we propose a distributed multistatic passive WiFi radar (PWR) consisting of 1 reference and 3 surveillance receivers, that can accurately count up to six test subjects using Doppler frequency shifts and intensity data from measured micro-Doppler (µ-Doppler) spectrograms. To build the person-counting processing model, we employ a multi-input convolutional neural network (MI-CNN). The results demonstrate a 96% counting accuracy for six subjects when data from all three surveillance channels are utilised

    Human activity classification using micro-Doppler signatures and ranging techniques

    Get PDF
    PhD ThesisHuman activity recognition is emerging as a very import research area due to its potential applications in surveillance, assisted living, and military operations. Various sensors including accelerometers, RFID, and cameras, have been applied to achieve automatic human activity recognition. Wearable sensor-based techniques have been well explored. However, some studies have shown that many users are more disinclined to use wearable sensors and also may forget to carry them. Consequently, research in this area started to apply contactless sensing techniques to achieve human activity recognition unobtrusively. In this research, two methods were investigated for human activity recognition, one method is radar-based and the other is using LiDAR (Light Detection and Ranging). Compared to other techniques, Doppler radar and LiDAR have several advantages including all-weather and all-day capabilities, non-contact and nonintrusive features. Doppler radar also has strong penetration to walls, clothes, trees, etc. LiDAR can capture accurate (centimetre-level) locations of targets in real-time. These characteristics make methods based on Doppler radar and LiDAR superior to other techniques. Firstly, this research measured micro-Doppler signatures of different human activities indoors and outdoors using Doppler radars. Micro-Doppler signatures are presented in the frequency domain to reflect different frequency shifts resulted from different components of a moving target. One of the major differences of this research in relation to other relevant research is that a simple pulsed radar system of very low-power was used. The outdoor experiments were performed in places of heavy clutter (grass, trees, uneven terrains), and confusers including animals and drones, were also considered in the experiments. Novel usages of machine learning techniques were implemented to perform subject classification, human activity classification, people counting, and coarse-grained localisation by classifying the micro-Doppler signatures. For the feature extraction of the micro-Doppler signatures, this research proposed the use of a two-directional twodimensional principal component analysis (2D2PCA). The results show that by applying 2D2PCA, the accuracy results of Support Vector Machine (SVM) and k-Nearest Neighbour (kNN) classifiers were greatly improved. A Convolutional Neural Network (CNN) was built for the target classifications of type, number, activity, and coarse localisation. The CNN model obtained very high classification accuracies (97% to 100%) for the outdoor experiments, which were superior to the results obtained by SVM and kNN. The indoor experiments measured several daily activities with the focus on dietary activities (eating and drinking). An overall classification rate of 92.8% was obtained in activity recognition in a kitchen scenario using the CNN. Most importantly, in nearly real-time, the proposed approach successfully recognized human activities in more than 89% of the time. This research also investigated the effects on the classification performance of the frame length of the sliding window, the angle of the direction of movement, and the number of radars used; providing valuable guidelines for machine learning modeling and experimental setup of micro-Doppler based research and applications. Secondly, this research used a two dimensional (2D) LiDAR to perform human activity detection indoors. LiDAR is a popular surveying method that has been widely used in localisation, navigation, and mapping. This research proposed the use of a 2D LiDAR to perform multiple people activity recognition by classifying their trajectories. Points collected by the LiDAR were clustered and classified into human and non-human classes. For the human class, the Kalman filter was used to track their trajectories, and the trajectories were further segmented and labelled with their corresponding activities. Spatial transformation was used for trajectory augmentation in order to overcome the problem of unbalanced classes and boost the performance of human activity recognition. Finally, a Long Short-term Memory (LSTM) network and a (Temporal Convolutional Network) TCN was built to classify the trajectory samples into fifteen activity classes. The TCN achieved the best result of 99.49% overall accuracy. In comparison, the proposed TCN slightly outperforms the LSTM. Both of them outperform hidden Markov Model (HMM), dynamic time warping (DTW), and SVM with a wide margin
    corecore