1,801 research outputs found

    Two-dimensional Length Extraction of Ballistic Target from ISAR Images Using a New Scaling Method by Affine Registration

    Get PDF
    The length of ballistic target is one of the most important features for target recognition. It can be extracted from ISAR Images. Unlike from the optical image, the length extraction from ISAR image has two difficulties. The first one is that it is hard to get the actual position of scattering centres by the traditional target extraction method. The second one is that the ISAR image’s cross scale is not known because of the target’s complex rotation. Here we propose two methods to solve these problems. Firstly, we use clustering method to get scattering centers. Secondly we propose to get cross scale of the ISAR images by affine registration. Experiments verified that our approach is realisable and has good performance.Defence Science Journal, Vol. 64, No. 5, September 2014, pp.458-463, DOI:http://dx.doi.org/10.14429/dsj.64.500

    Inverse Synthetic Aperture Radar Imaging for Micro-motion Target with Rotating Parts

    Get PDF
    This paper establishes imaging model for rigid body micro-motion target with rotating parts, and derives the formulas of micro-Doppler induced by target with rotation. To obtain well-focused inverse synthetic aperture radar image of rigid body micro-motion target with rotating parts, low frequency filter algorithm is presented to separate the echoes of the rigid body from that of the micro-motion parts. The results of measured data confirm the effectiveness of the proposed method.Defence Science Journal, 2013, 63(5), pp.521-523, DOI:http://dx.doi.org/10.14429/dsj.63.408

    ISAR Image formation with a combined Empirical Mode Decomposition and Time-Frequency Representation

    No full text
    International audienceIn this paper, a method for Inverse Synthetic Aperture Radar (ISAR) image formation based on the use of the Complex Empirical Mode Decomposition (CEMD) is proposed. The CEMD [1] which based on the Empirical Mode Decomposition (EMD) is used in conjunction with a Time-Frequency Representation (TFR) to estimate a 3-D time-range-Doppler Cubic image, which we can use to effectively extract a sequence of ISAR 2-D range-Doppler images. The potential of the proposed method to construct ISAR image is illustrated by simulations results performed on synthetic data and compared to 2-D Fourier Transform and TFR methods. The simulation results indicate that this method can provide ISAR images with a good resolution. These results demonstrate the potential application of the proposed method for ISAR image formation

    Efficient Measurement System to Investigate Micro-Doppler Signature of Ballistic Missile

    Get PDF
    Micro-Doppler (MD) shift caused by the micro-motion of a ballistic missile (BM) can be very useful to identify it. In this paper, the MD signatures of three scale-model BMs are investigated using a portable measurement system. The measurement system consists of an X-band 2-by-2 phase comparison mono-pulse radar, and a mechanical device that can impart controlled spinning and coning motions simultaneously to a model to yield the MD signature that replicates the characteristic of each target and the corresponding micro-motion. The coning motion determined the overall period of MD, and the spinning motion increased its amplitude. MD was also dependent on aspect angle. The designed system is portable, and can implement many micro-motions; it will contribute to analysis of MD in various situations.110Ysciescopuskc

    Review of radar classification and RCS characterisation techniques for small UAVs or drones

    Get PDF
    This review explores radar-based techniques currently utilised in the literature to monitor small unmanned aerial vehicle (UAV) or drones; several challenges have arisen due to their rapid emergence and commercialisation within the mass market. The potential security threats posed by these systems are collectively presented and the legal issues surrounding their successful integration are briefly outlined. Key difficulties involved in the identification and hence tracking of these `radar elusive' systems are discussed, along with how research efforts relating to drone detection, classification and radar cross section (RCS) characterisation are being directed in order to address this emerging challenge. Such methods are thoroughly analysed and critiqued; finally, an overall picture of the field in its current state is painted, alongside scope for future work over a broad spectrum

    An introduction to radar Automatic Target Recognition (ATR) technology in ground-based radar systems

    Full text link
    This paper presents a brief examination of Automatic Target Recognition (ATR) technology within ground-based radar systems. It offers a lucid comprehension of the ATR concept, delves into its historical milestones, and categorizes ATR methods according to different scattering regions. By incorporating ATR solutions into radar systems, this study demonstrates the expansion of radar detection ranges and the enhancement of tracking capabilities, leading to superior situational awareness. Drawing insights from the Russo-Ukrainian War, the paper highlights three pressing radar applications that urgently necessitate ATR technology: detecting stealth aircraft, countering small drones, and implementing anti-jamming measures. Anticipating the next wave of radar ATR research, the study predicts a surge in cognitive radar and machine learning (ML)-driven algorithms. These emerging methodologies aspire to confront challenges associated with system adaptation, real-time recognition, and environmental adaptability. Ultimately, ATR stands poised to revolutionize conventional radar systems, ushering in an era of 4D sensing capabilities

    Contributions in inverse synthetic aperture radar imaging

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore