67 research outputs found

    ISAR Image formation with a combined Empirical Mode Decomposition and Time-Frequency Representation

    No full text
    International audienceIn this paper, a method for Inverse Synthetic Aperture Radar (ISAR) image formation based on the use of the Complex Empirical Mode Decomposition (CEMD) is proposed. The CEMD [1] which based on the Empirical Mode Decomposition (EMD) is used in conjunction with a Time-Frequency Representation (TFR) to estimate a 3-D time-range-Doppler Cubic image, which we can use to effectively extract a sequence of ISAR 2-D range-Doppler images. The potential of the proposed method to construct ISAR image is illustrated by simulations results performed on synthetic data and compared to 2-D Fourier Transform and TFR methods. The simulation results indicate that this method can provide ISAR images with a good resolution. These results demonstrate the potential application of the proposed method for ISAR image formation

    Contributions in inverse synthetic aperture radar imaging

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Investigation of non-cooperative target recognition of small and slow moving air targets in modern air defence surveillance radar

    Get PDF
    This thesis covers research in the field of non-cooperative target recognition given the limitations of modern air defence surveillance radars. The potential presence of low observable manned or unmanned targets within the vast surveillance volume demand highly sensitive systems. This may again introduce unwanted detections of single birds of comparable radar cross section, previously avoided by use of wide clutter rejection filters and sensitivity time control. The demand for methods effectively separating between birds and slow moving manmade targets is evident. The research questions addressed are connected to identification of characteristic features of birds and manmade targets of comparable size. Ultimately the goal has been to find methods that can utilize such features to effectively distinguish between the classes. In contrast to the vast majority of non-cooperative target recognition publications, this thesis includes non-rigid targets covering a range of dielectric properties and targets falling in the resonant and Rayleigh scattering regions. These factors combined with insufficient spatial resolution for classification require alternative approaches such as utilization of periodic RCS modulation, micro-Doppler- and polarimetric signatures. Signatures of birds and UAVs are investigated through electromagnetic prediction and radar measurements. A flexible and fully polarimetric radar capable of simultaneous operation in both L- and S-band is developed for collection of relevant signatures. Inspired by the use of polarimetric radar for classification of precipitation covered in the weather radar literature, focus has been on using similar methods to recognize signatures of rotors, propellers and bird wings. Novel micro-Doppler signatures combining polarimetric information from this sensor is found to hold information about the orientation of such target parts. This information combined with several other features is evaluated for classification. The benefit from involving polarimetric measurements is especially investigated, and is found to be highly valuable when information provided by other methods is limited

    Template free Micro Doppler Signature Classification for Wheeled and Tracked Vehicles

    Get PDF
    The micro-Doppler signature is a time-varying frequency modulation imparted on radar echo caused by target’s micro-motion. To save the trouble of constructing template in the target classification, this paper investigates the micro-Doppler signature of wheeled and tracked vehicles and proposes a template-free classification method. Firstly, the echo signature is established and the micro-Doppler difference of these two kinds of targets is analysed. Secondly, some new micro-Doppler features are defined according to their difference. The new defined features are micro-Doppler bandwidth, micro-Doppler expansion rate and micro-Doppler peak number. According to the characteristic of the micro-Doppler in the time-frequency domain, we proposed to realise the feature extraction by Hough transformation. Lastly, template-free subjection functions are proposed to define the relationship between the features and the vehicles. By fuzzy comprehensive evaluation, the final classification result is obtained by combining the subjection probabilities together. Experimental results based on the simulated data and measured data are presented, which prove that the algorithm has good performance

    Battle damage assessment using inverse synthetic aperture radar (ISAR)

    Get PDF
    An imaging radar, like ISAR, offers a combatant the capability to perform long range surveillance with high quality imagery for positive target identification. Extending this attractive feature to the battle damage assessment problem (BDA) gives the operator instant viewing of the target's behavior when it is hit. As a consequence, immediate and decisive action can be quickly taken (if required). However, the conventional Fourier processing adopted by most ISAR systems does not provide adequate time resolution to capture the target's dynamic responses during the hit. As a result, the radar image becomes distorted. To improve the time resolution, time-frequency transform (TFT) methods of ISAR imaging have been proposed. Unlike traditional Fourier-based processing, TFT's allows variable time resolution of the entire event that falls within the ISAR coherent integration period to be extracted as part of the imaging process. We have shown in this thesis that the use of linear Short Time-Frequency Transforms allows the translational response of the aircraft caused by a blast force to be clearly extracted. The TFT extracted images not only tell us how the aircraft responds to a blast effect but also provides additional information about the cause of image distortion in the traditional ISAR display.http://archive.org/details/battledamagesses109451223Approved for public release; distribution is unlimited

    Study of processing techniques for radar non-cooperative target recognition.

    Get PDF
    Radar is a powerful tool for detecting and tracking airborne targets such as aircraft and missiles by day and night. Nowadays, it is seen as a genuine solution to the problem of target recognition. Recent events showed that cooperative means of identification such as the IFF transponders carried by most aircraft are not entirely reliable and can be switched off by terrorists. For this reason, it is important that target identification be obtained through measurements and reconnaissance based on non-cooperative techniques. In practice, recognition is achieved by comparing the electromagnetic sig nature of a target to a set of others previously collected and stored in a library. Such signatures generally represent the targets reflectivity as a function of space. A common representation is known as one-dimensional high-resolution range-profile (HRRP) and can be described as the projection of the reflectivity along the direction of propagation of the wave. When the measured signature matches a template, the target is identified. The main drawback of this technique is that signatures greatly vary with aspect-angle so that measurements must be made for many angles and in three dimensions. This implies a potentially large cost as large datasets must be created, stored and processed. Besides, any modification of the target structure may yield incorrect classification results. Instead, other processing techniques exist that rely on recent mathematical algorithms. These techniques can be used to extract target features directly from the radar data. Because of the direct relation with target geometry, these feature-based methods seem to be suitable candidates for reducing the need of large databases. However, their performances and their domains of validity are not known. This is especially true when it comes to real targets for at least three reasons. First, the performance of the methods varies with the signal-to-noise ratio. Second, man-made targets arc often more complex than just a set of independent theoretical point-like scatterers. Third, these targets are made up of a large number of scattering elements so that mathematical assumptions are not met. In conclusion, the physical correctness of the computational models are questionable. This thesis investigates the processing techniques that can be used for non-cooperative target recognition. It demonstrates that the scattering-centre extraction is not suitable for the model-based approach. In contrast, it shows that the technique can be used with the feature-based approach. In particular, it investigates the recognition when achieved directly in the z-domain and proposes a novel algorithm that exploits the information al ready in the database for identifying the signal features that corresponds to physical scatterers on the target. Experiments involving real targets show that the technique can enhance the classification performance and therefore could be used for non-cooperative target recognition

    Radar target classification by micro-Doppler contributions

    Get PDF
    This thesis studies non-cooperative automatic radar target classification. Recent developments in silicon-germanium and monolithic microwave integrated circuit technologies allows to build cheap and powerful continuous wave radars. Availability of radars opens new applications in different areas. One of these applications is security. Radars could be used for surveillance of huge areas and detect unwanted moving objects. Determination of the type of the target is essential for such systems. Microwave radars use high frequencies that reflect from objects of millimetre size. The micro-Doppler signature of a target is a time-varying frequency modulated contribution that arose in radar backscattering and caused by the relative movement of separate parts of the target. The micro-Doppler phenomenon allows to classify non-rigid moving objects by analysing their signatures. This thesis is focused on designing of automatic target classification systems based on analysis of micro-Doppler signatures. Analysis of micro-Doppler radar signatures is usually performed by second-order statistics, i.e. common energy-based power spectra and spectrogram. However, the information about phase coupling content in backscattering is totally lost in these energy-based statistics. This useful phase coupling content can be extracted by higher-order spectral techniques. We show that this content is useful for radar target classification in terms of improved robustness to various corruption factors. A problem of unmanned aerial vehicle (UAV) classification using continuous wave radar is covered in the thesis. All steps of processing required to make a decision out of the raw radar data are considered. A novel feature extraction method is introduced. It is based on eigenpairs extracted from the correlation matrix of the signature. Different classes of UAVs are successfully separated in feature space by support vector machine. Within experiments or real radar data, achieved high classification accuracy proves the efficiency of the proposed solutions. Thesis also covers several applications of the automotive radar due to very high growth in technologies for intelligent vehicle radar systems. Such radars are already build-in in the vehicle and ready for new applications. We consider two novel applications. First application is a multi-sensor fusion of video camera and radar for more efficient vehicle-to-vehicle video transmission. Second application is a frequency band invariant pedestrian classification by an automotive radar. This system allows us to use the same signal processing hardware/software for different countries where regulations vary and radars with different operating frequency are required. We consider different radar applications: ground moving target classification, aerial target classification, unmanned aerial vehicles classification, pedestrian classification. The highest priority is given to verification of proposed methods on real radar data collected with frequencies equal to 9.5, 10, 16.8, 24 and 33 GHz

    Advanced signal processing tools for ballistic missile defence and space situational awareness

    Get PDF
    The research presented in this Thesis deals with signal processing algorithms for the classification of sensitive targets for defence applications and with novel solutions for the detection of space objects. These novel tools include classification algorithms for Ballistic Targets (BTs) from both micro-Doppler (mD) and High Resolution Range Profiles (HRRPs) of a target, and a space-borne Passive Bistatic Radar (PBR) designed for exploiting the advantages guaranteed by the Forward Scattering (FS) configuration for the detection and identification of targets orbiting around the Earth.;Nowadays the challenge of the identification of Ballistic Missile (BM) warheads in a cloud of decoys and debris is essential in order to optimize the use of ammunition resources. In this Thesis, two different and efficient robust frameworks are presented. Both the frameworks exploit in different fashions the effect in the radar return of micro-motions exhibited by the target during its flight.;The first algorithm analyses the radar echo from the target in the time-frequency domain, with the aim to extract the mD information. Specifically, the Cadence Velocity Diagram (CVD) from the received signal is evaluated as mD profile of the target, where the mD components composing the radar echo and their repetition rates are shown.;Different feature extraction approaches are proposed based on the estimation of statistical indices from the 1-Dimensional (1D) Averaged CVD (ACVD), on the evaluation of pseudo-Zerike (pZ) and Krawtchouk (Kr) image moments and on the use of 2-Dimensional (2D) Gabor filter, considering the CVD as 2D image. The reliability of the proposed feature extraction approaches is tested on both simulated and real data, demonstrating the adaptivity of the framework to different radar scenarios and to different amount of available resources.;The real data are realized in laboratory, conducting an experiment for simulating the mD signature of a BT by using scaled replicas of the targets, a robotic manipulator for the micro-motions simulation and a Continuous Waveform (CW) radar for the radar measurements.;The second algorithm is based on the computation of the Inverse Radon Transform (IRT) of the target signature, represented by a HRRP frame acquired within an entire period of the main rotating motion of the target, which are precession for warheads and tumbling for decoys. Following, pZ moments of the resulting transformation are evaluated as final feature vector for the classifier. The features guarantee robustness against the target dimensions and the initial phase and the angular velocity of its motion.;The classification results on simulated data are shown for different polarization of the ElectroMagnetic (EM) radar waveform and for various operational conditions, confirming the the validity of the algorithm.The knowledge of space debris population is of fundamental importance for the safety of both the existing and new space missions. In this Thesis, a low budget solution to detect and possibly track space debris and satellites in Low Earth Orbit (LEO) is proposed.;The concept consists in a space-borne PBR installed on a CubeSaT flying at low altitude and detecting the occultations of radio signals coming from existing satellites flying at higher altitudes. The feasibility of such a PBR system is conducted, with key performance such as metrics the minimumsize of detectable objects, taking into account visibility and frequency constraints on existing radio sources, the receiver size and the compatibility with current CubeSaT's technology.;Different illuminator types and receiver altitudes are considered under the assumption that all illuminators and receivers are on circular orbits. Finally, the designed system can represent a possible solution to the the demand for Ballistic Missile Defence (BMD) systems able to provide early warning and classification and its potential has been assessed also for this purpose.The research presented in this Thesis deals with signal processing algorithms for the classification of sensitive targets for defence applications and with novel solutions for the detection of space objects. These novel tools include classification algorithms for Ballistic Targets (BTs) from both micro-Doppler (mD) and High Resolution Range Profiles (HRRPs) of a target, and a space-borne Passive Bistatic Radar (PBR) designed for exploiting the advantages guaranteed by the Forward Scattering (FS) configuration for the detection and identification of targets orbiting around the Earth.;Nowadays the challenge of the identification of Ballistic Missile (BM) warheads in a cloud of decoys and debris is essential in order to optimize the use of ammunition resources. In this Thesis, two different and efficient robust frameworks are presented. Both the frameworks exploit in different fashions the effect in the radar return of micro-motions exhibited by the target during its flight.;The first algorithm analyses the radar echo from the target in the time-frequency domain, with the aim to extract the mD information. Specifically, the Cadence Velocity Diagram (CVD) from the received signal is evaluated as mD profile of the target, where the mD components composing the radar echo and their repetition rates are shown.;Different feature extraction approaches are proposed based on the estimation of statistical indices from the 1-Dimensional (1D) Averaged CVD (ACVD), on the evaluation of pseudo-Zerike (pZ) and Krawtchouk (Kr) image moments and on the use of 2-Dimensional (2D) Gabor filter, considering the CVD as 2D image. The reliability of the proposed feature extraction approaches is tested on both simulated and real data, demonstrating the adaptivity of the framework to different radar scenarios and to different amount of available resources.;The real data are realized in laboratory, conducting an experiment for simulating the mD signature of a BT by using scaled replicas of the targets, a robotic manipulator for the micro-motions simulation and a Continuous Waveform (CW) radar for the radar measurements.;The second algorithm is based on the computation of the Inverse Radon Transform (IRT) of the target signature, represented by a HRRP frame acquired within an entire period of the main rotating motion of the target, which are precession for warheads and tumbling for decoys. Following, pZ moments of the resulting transformation are evaluated as final feature vector for the classifier. The features guarantee robustness against the target dimensions and the initial phase and the angular velocity of its motion.;The classification results on simulated data are shown for different polarization of the ElectroMagnetic (EM) radar waveform and for various operational conditions, confirming the the validity of the algorithm.The knowledge of space debris population is of fundamental importance for the safety of both the existing and new space missions. In this Thesis, a low budget solution to detect and possibly track space debris and satellites in Low Earth Orbit (LEO) is proposed.;The concept consists in a space-borne PBR installed on a CubeSaT flying at low altitude and detecting the occultations of radio signals coming from existing satellites flying at higher altitudes. The feasibility of such a PBR system is conducted, with key performance such as metrics the minimumsize of detectable objects, taking into account visibility and frequency constraints on existing radio sources, the receiver size and the compatibility with current CubeSaT's technology.;Different illuminator types and receiver altitudes are considered under the assumption that all illuminators and receivers are on circular orbits. Finally, the designed system can represent a possible solution to the the demand for Ballistic Missile Defence (BMD) systems able to provide early warning and classification and its potential has been assessed also for this purpose

    Radar UAV and Bird Signature comparisons with Micro-Doppler

    Get PDF
    This chapter reviews the similarities and differences between micro Unmanned Aerial Vehicles (UAVs), also referred to as drones, and bird targets from the signals they present to radar sensors. With the increasing usage of UAV platforms in both military and civilian applications, the demand for the ability to sense drone locations and discriminate them from background clutter and non-drone targets is becoming a vital requirement. A comparable target in size, speed and Radar Cross Section (RCS) is a bird. These are present almost everywhere that radar systems have to operate and have been detected by radar since the early origin of radar engineering. Due to the similarity in radar signature birds can cause common misclassification between them and the priority drone targets which has been identified as a current key challenge in radar sensing. In this chapter radar bird and drone signature research is initially summarised, then a fundamental model that represents the key contributions from drone rotor blades is introduced and compared to real measurements. Laboratory measurements of quadcopter rotor blade signatures with across 4 linear polarisations are then investigated in order to evaluate the trend of Signal-to-Noise-Ratio (SNR) vs. aspect angle. Next bird signatures from two separate radar systems are shown and compared to drone targets also present in the captures which are of comparable size and RCS. The outputs of all research presented are then summarised in the concluding remarks

    Multiple input multiple output radar three dimensional imaging technique

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore