6,477 research outputs found

    Thermal Management, Beam Control,and Packaging Designs For High Power

    Get PDF
    Several novel techniques for controlling, managing and utilizing high power diode lasers are described. Low pressure water spray cooling for a high heat flux system is developed and proven to be an ideal cooling method for high power diode laser arrays. In order to enable better thermal and optical performance of diode laser arrays, a new and simple optical element, the beam control prism, is invented. It provides the ability to accomplish beam shaping and beam tilting at the same time. Several low thermal resistance diode packaging designs using beam control prisms are proposed, studied and produced. Two pump cavity designs using a diode laser array to uniformly pump rod shape gain media are also investigated

    Recent Developments in High Power Semiconductor Diode Lasers

    Get PDF

    Method and Apparatus for Use of Beam Control Prisms with Diode Laser Arrays

    Get PDF
    The subject invention relates to beam control prisms and the use of a beam control prism to modify the beam properties of light emitted from an edge emitting diode laser. The subject invention can utilize a beam control prism placed next to a diode laser bar. The subject beam control prism can have, for example, a curved surface and/or a high reflective coated surface for a diode laser wavelength. The curved surface can collimate the fast axis divergence and the mirror surface can change the beam direction. The subject curved surface beam control prisms can incorporate one or more features, such as parabolic reflecting surface, elliptical exit surface with flat reflecting surface, and a hyperbolic entrance surface with flat reflecting surface

    Use of scanned detection in optical position encoders

    No full text
    Published versio

    Diode lasers now pushing the power limits

    Get PDF
    An important sector of IR lasers is higher power (>1W) a market worth $160m p.a. It has not been a smooth ride, but novel new applications for the new compact energy source are emerging all the time. The problems are being solved and even more impressive power and reliability levels are imminent, claim the makers

    Heat conduction tuning using the wave nature of phonons

    Full text link
    The world communicates to our senses of vision, hearing and touch in the language of waves, as the light, sound, and even heat essentially consist of microscopic vibrations of different media. The wave nature of light and sound has been extensively investigated over the past century and is now widely used in modern technology. But the wave nature of heat has been the subject of mostly theoretical studies, as its experimental demonstration, let alone practical use, remains challenging due to the extremely short wavelengths of these waves. Here we show a possibility to use the wave nature of heat for thermal conductivity tuning via spatial short-range order in phononic crystal nanostructures. Our experimental and theoretical results suggest that interference of thermal phonons occurs in strictly periodic nanostructures and slows the propagation of heat. This finding broadens the methodology of heat transfer engineering by expanding its territory to the wave nature of heat

    Modeling and Characterization of High-Power Electronic Devices: System Analysis of Laser Diodes with Flash Boiling and GaN HEMT Reliability Modeling

    Get PDF
    Modern electronics are increasingly more capable of high-power density operation, which presents important thermal challenges. High-power laser diode bars have proliferated in recent years, and while they can generate high optical powers, slope efficiencies are theoretically limited, resulting in high excess heat loads and consequent temperature shifts that can impair many applications. As a result, managing the ensuing heat flux and temperature changes has become increasingly important. Although traditional single-phase cooling solutions are limited by their convection coefficient to a certain temperature difference, two-phase solutions have potential for significantly higher convective coefficients. Flash boiling is a cooling method that can facilitate high levels of transient convective heat transfer, while allowing active control of coolant temperature. The transient nature of a flash cooling event is compatible with the heat load generated during operation of a high-power laser diode bar. Here, optical properties including spectral shift, spectral broadening, optical power, and beam quality are characterized over time. System inputs and outputs are correlated and evaluated via a statistical surrogate model. In certain cases, flash boiling is demonstrated to be a viable means of regulating laser diode bar temperature to achieve desirable optical output characteristics. In parallel, GaN HEMTs have seen rapid adoption in electronics applications due to their capability to operate at high powers at quick switching rates. As power levels rise, thermal management becomes crucial to avoid long-term degradation of the device. Spatial thermal modeling can help improve long-term reliability by linking local temperatures with various temperature dependent failure mechanisms such as hot-carrier injection

    Diode laser modules based on laser-machined, multi-layer ceramic substrates with integrated water cooling and micro-optics

    Get PDF
    This thesis presents a study on the use of low temperature co-fired ceramic (LTCC) material as a new platform for the packaging of multiple broad area single emitter diode lasers. This will address the recent trend in the laser industry of combining multiple laser diodes in a common package to reach the beam brightness and power required for pumping fibre lasers and for direct-diode industrial applications, such as welding, cutting, and etching. Packages based on multiple single emitters offer advantages over those derived from monolithic diode bars such as higher brightness, negligible thermal crosstalk between neighbouring emitters and protection against cascading failed emitters. In addition, insulated sub-mounted laser diodes based on telecommunication standards are preferred to diode bars and stacks because of the degree of assembly automation, and improved lifetime. At present, lasers are packaged on Cu or CuW platforms, whose high thermal conductivities allow an efficient passive cooling. However, as the number of emitters per package increases and improvements in the laser technology enable higher output power, the passive cooling will become insufficient. To overcome this problem, a LTCC platform capable of actively removing the heat generated by the lasers through impingement jet cooling was developed. It was provided with an internal water manifold capable to impinge water at 0.15 lmin-1 flow rate on the back surface of each laser with a variation of less than 2 °C in the temperature between the diodes. The thermal impedance of 2.7°C/W obtained allows the LTCC structure to cool the latest commercial broad area single emitter diode lasers which deliver up to 13 W of optical power. Commonly, the emitters are placed in a “staircase” formation to stack the emitters in the fast-axis, maintaining the brightness of the diode lasers. However, due to technical difficulties of machining the LTCC structure with a staircase-shaped face, a novel out-plane beam shaping method was proposed to obtain an elegant and compact free space combination of the laser beam on board using inexpensive optics. A compact arrangement was obtained using aligned folding mirrors, which stacked the beams on top of each other in the fast direction with the minimum dead space

    Research and development of laser engraving and material cutting machine from 3D printer

    Get PDF
    This article deals with the adjustment of a 3D printer for laser engraving and material cutting. The print head can be fitted with a solid laser diode module, which achieves a compact size while retaining its useful power. Two paths lead to the use of such a concept. It is possible to equip the existing print head with a module, which also brings a number of disadvantages such as, for example, the reduction of the printing space or the need for a suitable mounting design. A more elegant solution is to consider this in the design of a 3D printer and design a system to exchange the print heads for 3D printing and laser engraving. Such a solution allows full utilization of the workspace and simple installation of the effector for the required type of work. According to the installed power of the laser diode, it is possible not only to engrave but also cut material such as thin wood, veneer or acrylic glass. The use of such a machine is not only for graphic elements but for the creation of various stencils, boxes or simple models, which can be made up of plastic-burning pieces. The laser module is controlled by a driver, which is designed for the device. This is connected to a 3D printer control board. It is, therefore, necessary for the control board to have at least two pins, which can be controlled after adjusting the control firmware. Most laser modules are normally equipped with an adjustable lens, which is used to concentrate the focus of a laser for the given distance against the worktop. Thus, the modified 3D printer can perform its function as a multi-purpose CNC machine, while a basic platform similar for both devices is used.Web of Science281524
    corecore