996 research outputs found

    Integration of through-wafer interconnects with a two-dimensional cantilever array

    Get PDF
    Cataloged from PDF version of article.High-density through-wafer interconnects are incorporated in a two-dimensional (2D) micromachined cantilever array. The design addresses alignment and density issues associated with 2D arrays. Each cantilever has piezoresistive deflection sensors and high-aspect ratio silicon tips. The fabrication process and array operation are described. The integration of cantilevers, tips, and interconnects enables operation of a high-density 2D scanning probe array over large areas. (C) 2000 Elsevier Science S.A. All rights reserved

    Alternative piezoresistor designs for maximizing cantilever sensitivity.

    Get PDF
    Over the last 15 years, researchers have explored the use of piezoresistive microcantilevers/resonators as gas sensors because of their relative ease in fabrication, low production cost, and their ability to detect changes in mass or surface stress with fairly good sensitivity. However, existing microcantilever designs rely on irreversible chemical reactions for detection and researchers have been unable to optimize symmetric geometries for increased sensitivity. Previous work by our group showed the capability of T-shaped piezoresistive cantilevers to detect gas composition using a nonreaction-based method – viscous damping. However, this geometry yielded only small changes in resistance. Recently, computational studies performed by our group indicated that optimizing the geometry of the base piezoresistor increases device sensitivity up to 700 times. Thus, the focus of this work is to improve the sensitivity of nonreaction-based piezoresistive microcantilevers by incorporating asymmetric piezoresistive sensing elements in a new array design. A three-mask fabrication process was performed using a 4 silicon-on-insulator wafer. Gold bond pads and leads were patterned using two optical lithography masks, gold sputtering, and acetone lift-off techniques. The cantilevers were patterned with electron-beam lithography and a dry etch masking layer was then deposited via electronbeam evaporation of iron. Subsequently, the silicon device layer was deep reactive ion etched (DRIE) to create the vertical sidewalls and the sacrificial silicon dioxide layer was removed with a buffered oxide etch, completely releasing the cantilever structures. Finally, the device was cleaned and dried with critical point drying to prevent stiction of the devices to the substrate. For the resonance experiments, the cantilevers were driven electrostatically by applying an AC bias, 10 Vpp, to the gate electrode. A DC bias of 10 V was placed across the piezoresistor in series with a 14 kÙ resistor. The drive frequency (0 – 80 kHz) was swept until the cantilever resonated at its natural frequency, which occurred when the output of the lock-in amplifier reached its maximum. These devices have been actuated to resonance under vacuum and their resonant frequencies and Qfactors measured. The first mode of resonance for the asymmetric cantilevers was found to range between 40 kHz and 63 kHz, depending on the piezoresistor geometry and length of the cantilever beam. The redesigned piezoresistive microcantilevers tested yielded static and dynamic sensitivities ranging from 1-6 Ù/Ìm and 2-17 Ù/Ìm displacement, respectively, which are 40 –730 times more sensitive than the best symmetric design previously reported by our group. Furthermore, the Q-factors ranged between 1700 and 4200, typical values for MEMS microcantilevers

    Automated parallel high-speed atomic force microscopy

    Get PDF
    Cataloged from PDF version of article.An expandable system has been developed to operate multiple probes for the atomic force microscope in parallel at high speeds. The combined improvements from parallelism and enhanced tip speed in this system represent an increase in throughput by over two orders of magnitude. A modular cantilever design has been replicated to produce an array of 50 cantilevers with a 200 μm pitch. This design contains a dedicated integrated sensor and integrated actuator where the cells can be repeated indefinitely. Electrical shielding within the array virtually eliminates coupling between the actuators and sensors. The reduced coupling simplifies the control electronics, facilitating the design of a computer system to automate the parallel high-speed arrays. This automated system has been applied to four cantilevers within the array of 50 cantilevers, with a 20 kHz bandwidth and a noise level of less than 50 Å. For typical samples, this bandwidth allows us to scan the probes at 4 mm/s. © 1998 American Institute of Physic

    Cantilever based sensors for surface stress measurements

    Get PDF

    Piezoresistive polymer composites for cantilever readout

    Get PDF

    Integrated microcantilever fluid sensor as a blood coagulometer

    Get PDF
    The work presented concerns the improvement in mechanical to thermal signal of a microcantilever fluid probe for monitoring patient prothrombin time (PT) and international normalized ratio (INR) based on the physical measurement of the clotting cascade. The current device overcomes hydrodynamic damping limitations by providing an internal thermal actuation force and is realised as a disposable sensor using an integrated piezoresistive deflection measurement. Unfortunately, the piezoresistor is sensitive to thermal changes and in the current design the signal is saturated by the thermal actuation. Overcoming this problem is critical for demonstrating a blood coagulometer and in the wider field as a microsensor capable of simultaneously monitoring rheological and thermal measurements of micro-litre samples. Thermal, electrical, and mechanical testing of a new design indicates a significant reduction in the thermal crosstalk and has led to a breakthrough in distinguishing the mechanical signal when operated in moderately viscous fluids (2-3 cP). A clinical evaluation has been conducted at The Royal London Hospital to measure the accuracy and precision of the improved microcantilever fluid probe. The correlation against the standard laboratory analyser INR, from a wide range of patient clotting times(INR 0.9-6.08) is equal to 0.987 (n=87) and precision of the device measured as the percentage coefficient of variation, excluding patient samples tested < 3 times, is equal to 4.00% (n=64). The accuracy and precision is comparable to that of currently available point-of-care PT/INR devices. The response of the fluid probe in glycerol solutions indicates the potential for simultaneous measurement of rheological and thermal properties though further work is required to establish the accuracy and range of the device as a MEMS based viscometer

    A Novel Integrated Multifunction Micro-Sensor for Three-Dimensional Micro-Force Measurements

    Get PDF
    An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10−3 KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields

    A hybrid polymer/ceramic/semiconductor fabrication platform for high-sensitivity fluid-compatible MEMS devices with sealed integrated electronics

    Full text link
    Active microelectromechanical systems can couple the nanomechanical domain with the electronic domain by integrating electronic sensing and actuation mechanisms into the micromechanical device. This enables very fast and sensitive measurements of force, acceleration, or the presence of biological analytes. In particular, strain sensors integrated onto MEMS cantilevers are widely used to transduce an applied force to an electrically measurable signal in applications like atomic force microscopy, mass sensing, or molecular detection. However, the high Young's moduli of traditional cantilever materials (silicon or silicon nitride) limit the thickness of the devices, and therefore the deflection sensitivity that can be obtained for a specific spring constant. Using softer materials such as polymers as the structural material of the MEMS device would overcome this problem. However, these materials are incompatible with high-temperature fabrication processes often required to fabricate high quality electronic strain sensors. We introduce a pioneering solution that seamlessly integrates the benefits of polymer MEMS technology with the remarkable sensitivity of strain sensors, even under high-temperature deposition conditions. Cantilevers made using this technology are inherently fluid compatible and have shown up to 6 times lower force noise than their conventional counterparts. We demonstrate the benefits and versatility of this polymer/ceramic/semiconductor multi-layer fabrication approach with the examples of self-sensing AFM cantilevers, and membrane surface stress sensors for biomolecule detection

    Compliant Tactile Sensors for High-Aspect-Ratio Form Metrology

    Get PDF
    • …
    corecore