66,035 research outputs found

    Validation of hardware events for successful performance pattern identification in High Performance Computing

    Full text link
    Hardware performance monitoring (HPM) is a crucial ingredient of performance analysis tools. While there are interfaces like LIKWID, PAPI or the kernel interface perf\_event which provide HPM access with some additional features, many higher level tools combine event counts with results retrieved from other sources like function call traces to derive (semi-)automatic performance advice. However, although HPM is available for x86 systems since the early 90s, only a small subset of the HPM features is used in practice. Performance patterns provide a more comprehensive approach, enabling the identification of various performance-limiting effects. Patterns address issues like bandwidth saturation, load imbalance, non-local data access in ccNUMA systems, or false sharing of cache lines. This work defines HPM event sets that are best suited to identify a selection of performance patterns on the Intel Haswell processor. We validate the chosen event sets for accuracy in order to arrive at a reliable pattern detection mechanism and point out shortcomings that cannot be easily circumvented due to bugs or limitations in the hardware

    Magnetic and radar sensing for multimodal remote health monitoring

    Get PDF
    With the increased life expectancy and rise in health conditions related to aging, there is a need for new technologies that can routinely monitor vulnerable people, identify their daily pattern of activities and any anomaly or critical events such as falls. This paper aims to evaluate magnetic and radar sensors as suitable technologies for remote health monitoring purpose, both individually and fusing their information. After experiments and collecting data from 20 volunteers, numerical features has been extracted in both time and frequency domains. In order to analyse and verify the validation of fusion method for different classifiers, a Support Vector Machine with a quadratic kernel, and an Artificial Neural Network with one and multiple hidden layers have been implemented. Furthermore, for both classifiers, feature selection has been performed to obtain salient features. Using this technique along with fusion, both classifiers can detect 10 different activities with an accuracy rate of approximately 96%. In cases where the user is unknown to the classifier, an accuracy of approximately 92% is maintained

    Spontaneous Subtle Expression Detection and Recognition based on Facial Strain

    Full text link
    Optical strain is an extension of optical flow that is capable of quantifying subtle changes on faces and representing the minute facial motion intensities at the pixel level. This is computationally essential for the relatively new field of spontaneous micro-expression, where subtle expressions can be technically challenging to pinpoint. In this paper, we present a novel method for detecting and recognizing micro-expressions by utilizing facial optical strain magnitudes to construct optical strain features and optical strain weighted features. The two sets of features are then concatenated to form the resultant feature histogram. Experiments were performed on the CASME II and SMIC databases. We demonstrate on both databases, the usefulness of optical strain information and more importantly, that our best approaches are able to outperform the original baseline results for both detection and recognition tasks. A comparison of the proposed method with other existing spatio-temporal feature extraction approaches is also presented.Comment: 21 pages (including references), single column format, accepted to Signal Processing: Image Communication journa

    Automatic Detection of Malware-Generated Domains with Recurrent Neural Models

    Get PDF
    Modern malware families often rely on domain-generation algorithms (DGAs) to determine rendezvous points to their command-and-control server. Traditional defence strategies (such as blacklisting domains or IP addresses) are inadequate against such techniques due to the large and continuously changing list of domains produced by these algorithms. This paper demonstrates that a machine learning approach based on recurrent neural networks is able to detect domain names generated by DGAs with high precision. The neural models are estimated on a large training set of domains generated by various malwares. Experimental results show that this data-driven approach can detect malware-generated domain names with a F_1 score of 0.971. To put it differently, the model can automatically detect 93 % of malware-generated domain names for a false positive rate of 1:100.Comment: Submitted to NISK 201

    Microbial community pattern detection in human body habitats via ensemble clustering framework

    Full text link
    The human habitat is a host where microbial species evolve, function, and continue to evolve. Elucidating how microbial communities respond to human habitats is a fundamental and critical task, as establishing baselines of human microbiome is essential in understanding its role in human disease and health. However, current studies usually overlook a complex and interconnected landscape of human microbiome and limit the ability in particular body habitats with learning models of specific criterion. Therefore, these methods could not capture the real-world underlying microbial patterns effectively. To obtain a comprehensive view, we propose a novel ensemble clustering framework to mine the structure of microbial community pattern on large-scale metagenomic data. Particularly, we first build a microbial similarity network via integrating 1920 metagenomic samples from three body habitats of healthy adults. Then a novel symmetric Nonnegative Matrix Factorization (NMF) based ensemble model is proposed and applied onto the network to detect clustering pattern. Extensive experiments are conducted to evaluate the effectiveness of our model on deriving microbial community with respect to body habitat and host gender. From clustering results, we observed that body habitat exhibits a strong bound but non-unique microbial structural patterns. Meanwhile, human microbiome reveals different degree of structural variations over body habitat and host gender. In summary, our ensemble clustering framework could efficiently explore integrated clustering results to accurately identify microbial communities, and provide a comprehensive view for a set of microbial communities. Such trends depict an integrated biography of microbial communities, which offer a new insight towards uncovering pathogenic model of human microbiome.Comment: BMC Systems Biology 201
    corecore