915 research outputs found

    Mining Fix Patterns for FindBugs Violations

    Get PDF
    In this paper, we first collect and track a large number of fixed and unfixed violations across revisions of software. The empirical analyses reveal that there are discrepancies in the distributions of violations that are detected and those that are fixed, in terms of occurrences, spread and categories, which can provide insights into prioritizing violations. To automatically identify patterns in violations and their fixes, we propose an approach that utilizes convolutional neural networks to learn features and clustering to regroup similar instances. We then evaluate the usefulness of the identified fix patterns by applying them to unfixed violations. The results show that developers will accept and merge a majority (69/116) of fixes generated from the inferred fix patterns. It is also noteworthy that the yielded patterns are applicable to four real bugs in the Defects4J major benchmark for software testing and automated repair.Comment: Accepted for IEEE Transactions on Software Engineerin

    Inferring Energy Bounds via Static Program Analysis and Evolutionary Modeling of Basic Blocks

    Full text link
    The ever increasing number and complexity of energy-bound devices (such as the ones used in Internet of Things applications, smart phones, and mission critical systems) pose an important challenge on techniques to optimize their energy consumption and to verify that they will perform their function within the available energy budget. In this work we address this challenge from the software point of view and propose a novel parametric approach to estimating tight bounds on the energy consumed by program executions that are practical for their application to energy verification and optimization. Our approach divides a program into basic (branchless) blocks and estimates the maximal and minimal energy consumption for each block using an evolutionary algorithm. Then it combines the obtained values according to the program control flow, using static analysis, to infer functions that give both upper and lower bounds on the energy consumption of the whole program and its procedures as functions on input data sizes. We have tested our approach on (C-like) embedded programs running on the XMOS hardware platform. However, our method is general enough to be applied to other microprocessor architectures and programming languages. The bounds obtained by our prototype implementation can be tight while remaining on the safe side of budgets in practice, as shown by our experimental evaluation.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854). Improved version of the one presented at the HIP3ES 2016 workshop (v1): more experimental results (added benchmark to Table 1, added figure for new benchmark, added Table 3), improved Fig. 1, added Fig.

    LLOV: A Fast Static Data-Race Checker for OpenMP Programs

    Get PDF
    In the era of Exascale computing, writing efficient parallel programs is indispensable and at the same time, writing sound parallel programs is highly difficult. While parallel programming is easier with frameworks such as OpenMP, the possibility of data races in these programs still persists. In this paper, we propose a fast, lightweight, language agnostic, and static data race checker for OpenMP programs based on the LLVM compiler framework. We compare our tool with other state-of-the-art data race checkers on a variety of well-established benchmarks. We show that the precision, accuracy, and the F1 score of our tool is comparable to other checkers while being orders of magnitude faster. To the best of our knowledge, this work is the only tool among the state-of-the-art data race checkers that can verify a FORTRAN program to be data race free

    Performance regression testing of concurrent classes

    Full text link
    Developers of thread-safe classes struggle with two oppos-ing goals. The class must be correct, which requires syn-chronizing concurrent accesses, and the class should pro-vide reasonable performance, which is difficult to realize in the presence of unnecessary synchronization. Validating the performance of a thread-safe class is challenging because it requires diverse workloads that use the class, because ex-isting performance analysis techniques focus on individual bottleneck methods, and because reliably measuring the per-formance of concurrent executions is difficult. This paper presents SpeedGun, an automatic performance regression testing technique for thread-safe classes. The key idea is to generate multi-threaded performance tests and to com-pare two versions of a class with each other. The analysis notifies developers when changing a thread-safe class signif-icantly influences the performance of clients of this class. An evaluation with 113 pairs of classes from popular Java projects shows that the analysis effectively identifies 13 per-formance differences, including performance regressions that the respective developers were not aware of

    AN INVESTIGATION OF COMMON CODING ERRORS IN OPEN SOURCE GRAPHICAL USER INTERFACE CODE

    Get PDF
    Introduction: This thesis investigates the occurrence of coding errors in the Open Source Software (OSS) Graphical User Interface (GUI) code. Characteristics of coding errors in the OSS GUI code are explored and analyzed so that guidelines are proposed to lower the influence of coding errors in OSS GUI software. Background: This thesis recognizes the increased prominence of, as well as the increased total volume of OSS GUI code within modern software applications. This thesis seeks to identify whether specific types of errors manifest themselves more frequently in GUI code. The rationale behind this investigation is that: if specific errors are known to occur in specific locations then they can be more easily identified; if specific errors are due to specific causes then they can be more easily recognized in earlier stages of software development. Methods: Common coding errors were selected and examined in example OSS code using an automatic code inspection. An analysis of results from this inspection identified the frequency and location (i.e. in GUI or non-GUI code) of the common coding error. An initial sample of OSS GUI projects was selected to be examined and a wider range of OSS GUI projects was randomly chosen to evaluate the results that were obtained from the initial sample. Results: It was found that there are some differences in the type of errors within differing portions of source code. Certain types of coding errors were more frequently identified in GUI code than non-GUI code and corresponding typical GUI coding error-prone behaviors were summarized. Discussion: Awareness of these differences helps predict errors during the earlier stages of software development. Comprehension of these GUI coding error-prone behaviours contributes to prevent typical GUI coding errors as much as possible during the whole lifecycle of OSS GUI projects

    Cache-aware cross-profiling for java processors

    Full text link

    Program Model Checking: A Practitioner's Guide

    Get PDF
    Program model checking is a verification technology that uses state-space exploration to evaluate large numbers of potential program executions. Program model checking provides improved coverage over testing by systematically evaluating all possible test inputs and all possible interleavings of threads in a multithreaded system. Model-checking algorithms use several classes of optimizations to reduce the time and memory requirements for analysis, as well as heuristics for meaningful analysis of partial areas of the state space Our goal in this guidebook is to assemble, distill, and demonstrate emerging best practices for applying program model checking. We offer it as a starting point and introduction for those who want to apply model checking to software verification and validation. The guidebook will not discuss any specific tool in great detail, but we provide references for specific tools
    • …
    corecore