8,571 research outputs found

    Metrics for Differential Privacy in Concurrent Systems

    Get PDF
    Part 3: Security AnalysisInternational audienceOriginally proposed for privacy protection in the context of statistical databases, differential privacy is now widely adopted in various models of computation. In this paper we investigate techniques for proving differential privacy in the context of concurrent systems. Our motivation stems from the work of Tschantz et al., who proposed a verification method based on proving the existence of a stratified family between states, that can track the privacy leakage, ensuring that it does not exceed a given leakage budget. We improve this technique by investigating a state property which is more permissive and still implies differential privacy. We consider two pseudometrics on probabilistic automata: The first one is essentially a reformulation of the notion proposed by Tschantz et al. The second one is a more liberal variant, relaxing the relation between them by integrating the notion of amortisation, which results into a more parsimonious use of the privacy budget. We show that the metrical closeness of automata guarantees the preservation of differential privacy, which makes the two metrics suitable for verification. Moreover we show that process combinators are non-expansive in this pseudometric framework. We apply the pseudometric framework to reason about the degree of differential privacy of protocols by the example of the Dining Cryptographers Protocol with biased coins

    Up-To Techniques for Generalized Bisimulation Metrics

    Get PDF
    Bisimulation metrics allow us to compute distances between the behaviors of probabilistic systems. In this paper we present enhancements of the proof method based on bisimulation metrics, by extending the theory of up-to techniques to (pre)metrics on discrete probabilistic concurrent processes. Up-to techniques have proved to be a powerful proof method for showing that two systems are bisimilar, since they make it possible to build (and thereby check) smaller relations in bisimulation proofs. We define soundness conditions for up-to techniques on metrics, and study compatibility properties that allow us to safely compose up-to techniques with each other. As an example, we derive the soundness of the up-to-bisimilarity-metric-and-context technique. The study is carried out for a generalized version of the bisimulation metrics, in which the Kantorovich lifting is parametrized with respect to a distance function. The standard bisimulation metrics, as well as metrics aimed at capturing multiplicative properties such as differential privacy, are specific instances of this general definition

    Synthetic Observational Health Data with GANs: from slow adoption to a boom in medical research and ultimately digital twins?

    Full text link
    After being collected for patient care, Observational Health Data (OHD) can further benefit patient well-being by sustaining the development of health informatics and medical research. Vast potential is unexploited because of the fiercely private nature of patient-related data and regulations to protect it. Generative Adversarial Networks (GANs) have recently emerged as a groundbreaking way to learn generative models that produce realistic synthetic data. They have revolutionized practices in multiple domains such as self-driving cars, fraud detection, digital twin simulations in industrial sectors, and medical imaging. The digital twin concept could readily apply to modelling and quantifying disease progression. In addition, GANs posses many capabilities relevant to common problems in healthcare: lack of data, class imbalance, rare diseases, and preserving privacy. Unlocking open access to privacy-preserving OHD could be transformative for scientific research. In the midst of COVID-19, the healthcare system is facing unprecedented challenges, many of which of are data related for the reasons stated above. Considering these facts, publications concerning GAN applied to OHD seemed to be severely lacking. To uncover the reasons for this slow adoption, we broadly reviewed the published literature on the subject. Our findings show that the properties of OHD were initially challenging for the existing GAN algorithms (unlike medical imaging, for which state-of-the-art model were directly transferable) and the evaluation synthetic data lacked clear metrics. We find more publications on the subject than expected, starting slowly in 2017, and since then at an increasing rate. The difficulties of OHD remain, and we discuss issues relating to evaluation, consistency, benchmarking, data modelling, and reproducibility.Comment: 31 pages (10 in previous version), not including references and glossary, 51 in total. Inclusion of a large number of recent publications and expansion of the discussion accordingl
    corecore