1,879 research outputs found

    GINA-3D: Learning to Generate Implicit Neural Assets in the Wild

    Full text link
    Modeling the 3D world from sensor data for simulation is a scalable way of developing testing and validation environments for robotic learning problems such as autonomous driving. However, manually creating or re-creating real-world-like environments is difficult, expensive, and not scalable. Recent generative model techniques have shown promising progress to address such challenges by learning 3D assets using only plentiful 2D images -- but still suffer limitations as they leverage either human-curated image datasets or renderings from manually-created synthetic 3D environments. In this paper, we introduce GINA-3D, a generative model that uses real-world driving data from camera and LiDAR sensors to create realistic 3D implicit neural assets of diverse vehicles and pedestrians. Compared to the existing image datasets, the real-world driving setting poses new challenges due to occlusions, lighting-variations and long-tail distributions. GINA-3D tackles these challenges by decoupling representation learning and generative modeling into two stages with a learned tri-plane latent structure, inspired by recent advances in generative modeling of images. To evaluate our approach, we construct a large-scale object-centric dataset containing over 520K images of vehicles and pedestrians from the Waymo Open Dataset, and a new set of 80K images of long-tail instances such as construction equipment, garbage trucks, and cable cars. We compare our model with existing approaches and demonstrate that it achieves state-of-the-art performance in quality and diversity for both generated images and geometries.Comment: Accepted by CVPR 202

    Deep geometric probabilistic models

    Full text link
    La géométrie moléculaire, également connue sous le nom de conformation, est la représentation la plus intrinsèque et la plus informative des molécules. Cependant, prédire des conformations stables à partir de graphes moléculaires reste un problème difficile et fondamental en chimie et en biologie computationnelles. Les méthodes expérimentales et computationelles traditionnelles sont généralement coûteuses et chronophages. Récemment, nous avons assisté à des progrès considérables dans l'utilisation de l'apprentissage automatique, en particulier des modèles génératifs, pour accélérer cette procédure. Cependant, les approches actuelles basées sur les données n'ont généralement pas la capacité de modéliser des distributions complexes et ne tiennent pas compte de caractéristiques géométriques importantes. Dans cette thèse, nous cherchons à construire des modèles génératifs basés sur des principes pour la génération de conformation moléculaire qui peuvent surmonter les problèmes ci-dessus. Plus précisément, nous avons proposé des modèles de diffusion basés sur les flux, sur l'énergie et de débruitage pour la génération de structures moléculaires. Cependant, il n'est pas trivial d'appliquer ces modèles à cette tâche où la vraisemblance des géométries devrait avoir la propriété importante d'invariance par rotation par de translation. Inspirés par les progrès récents de l'apprentissage des représentations géométriques, nous fournissons à la fois une justification théorique et une mise en œuvre pratique sur la manière d'imposer cette propriété aux modèles. Des expériences approfondies sur des jeux de données de référence démontrent l'efficacité de nos approches proposées par rapport aux méthodes de référence existantes.Molecular geometry, also known as conformation, is the most intrinsic and informative representation of molecules. However, predicting stable conformations from molecular graphs remains a challenging and fundamental problem in computational chemistry and biology. Traditional experimental and computational methods are usually expensive and time-consuming. Recently, we have witnessed considerable progress in using machine learning, especially generative models, to accelerate this procedure. However, current data-driven approaches usually lack the capacity for modeling complex distributions and fail to take important geometric features into account. In this thesis, we seek to build principled generative models for molecular conformation generation that can overcome the above problems. Specifically, we proposed flow-based, energy-based, and denoising diffusion models for molecular structure generation. However, it's nontrivial to apply these models to this task where the likelihood of the geometries should have the important property of rotational and translation invariance. Inspired by the recent progress of geometric representation learning, we provide both theoretical justification and practical implementation about how to impose this property into the models. Extensive experiments on common benchmark datasets demonstrate the effectiveness of our proposed approaches over existing baseline methods

    Vulnerability Clustering and other Machine Learning Applications of Semantic Vulnerability Embeddings

    Full text link
    Cyber-security vulnerabilities are usually published in form of short natural language descriptions (e.g., in form of MITRE's CVE list) that over time are further manually enriched with labels such as those defined by the Common Vulnerability Scoring System (CVSS). In the Vulnerability AI (Analytics and Intelligence) project, we investigated different types of semantic vulnerability embeddings based on natural language processing (NLP) techniques to obtain a concise representation of the vulnerability space. We also evaluated their use as a foundation for machine learning applications that can support cyber-security researchers and analysts in risk assessment and other related activities. The particular applications we explored and briefly summarize in this report are clustering, classification, and visualization, as well as a new logic-based approach to evaluate theories about the vulnerability space.Comment: 27 pages, 13 figure

    Learning from Invalid Data: On Constraint Satisfaction in Generative Models

    Full text link
    Generative models have demonstrated impressive results in vision, language, and speech. However, even with massive datasets, they struggle with precision, generating physically invalid or factually incorrect data. This is particularly problematic when the generated data must satisfy constraints, for example, to meet product specifications in engineering design or to adhere to the laws of physics in a natural scene. To improve precision while preserving diversity and fidelity, we propose a novel training mechanism that leverages datasets of constraint-violating data points, which we consider invalid. Our approach minimizes the divergence between the generative distribution and the valid prior while maximizing the divergence with the invalid distribution. We demonstrate how generative models like GANs and DDPMs that we augment to train with invalid data vastly outperform their standard counterparts which solely train on valid data points. For example, our training procedure generates up to 98 % fewer invalid samples on 2D densities, improves connectivity and stability four-fold on a stacking block problem, and improves constraint satisfaction by 15 % on a structural topology optimization benchmark in engineering design. We also analyze how the quality of the invalid data affects the learning procedure and the generalization properties of models. Finally, we demonstrate significant improvements in sample efficiency, showing that a tenfold increase in valid samples leads to a negligible difference in constraint satisfaction, while less than 10 % invalid samples lead to a tenfold improvement. Our proposed mechanism offers a promising solution for improving precision in generative models while preserving diversity and fidelity, particularly in domains where constraint satisfaction is critical and data is limited, such as engineering design, robotics, and medicine
    • …
    corecore