34,357 research outputs found

    Metric Learning for Individual Fairness

    Get PDF
    There has been much discussion concerning how "fairness" should be measured or enforced in classification. Individual Fairness [Dwork et al., 2012], which requires that similar individuals be treated similarly, is a highly appealing definition as it gives strong treatment guarantees for individuals. Unfortunately, the need for a task-specific similarity metric has prevented its use in practice. In this work, we propose a solution to the problem of approximating a metric for Individual Fairness based on human judgments. Our model assumes access to a human fairness arbiter who is free of explicit biases and possesses sufficient domain knowledge to evaluate similarity. Our contributions include definitions for metric approximation relevant for Individual Fairness, constructions for approximations from a limited number of realistic queries to the arbiter on a sample of individuals, and learning procedures to construct hypotheses for metric approximations which generalize to unseen samples under certain assumptions of learnability of distance threshold functions

    Causal Fair Metric: Bridging Causality, Individual Fairness, and Adversarial Robustness

    Full text link
    Adversarial perturbation is used to expose vulnerabilities in machine learning models, while the concept of individual fairness aims to ensure equitable treatment regardless of sensitive attributes. Despite their initial differences, both concepts rely on metrics to generate similar input data instances. These metrics should be designed to align with the data's characteristics, especially when it is derived from causal structure and should reflect counterfactuals proximity. Previous attempts to define such metrics often lack general assumptions about data or structural causal models. In this research, we introduce a causal fair metric formulated based on causal structures that encompass sensitive attributes. For robustness analysis, the concept of protected causal perturbation is presented. Additionally, we delve into metric learning, proposing a method for metric estimation and deployment in real-world problems. The introduced metric has applications in the fields adversarial training, fair learning, algorithmic recourse, and causal reinforcement learning

    Learning fair representations

    Get PDF
    Abstract We propose a learning algorithm for fair classification that achieves both group fairness (the proportion of members in a protected group receiving positive classification is identical to the proportion in the population as a whole), and individual fairness (similar individuals should be treated similarly). We formulate fairness as an optimization problem of finding a good representation of the data with two competing goals: to encode the data as well as possible, while simultaneously obfuscating any information about membership in the protected group. We show positive results of our algorithm relative to other known techniques, on three datasets. Moreover, we demonstrate several advantages to our approach. First, our intermediate representation can be used for other classification tasks (i.e., transfer learning is possible); secondly, we take a step toward learning a distance metric which can find important dimensions of the data for classification

    Fairness, Semi-Supervised Learning, and More: A General Framework for Clustering with Stochastic Pairwise Constraints

    Full text link
    Metric clustering is fundamental in areas ranging from Combinatorial Optimization and Data Mining, to Machine Learning and Operations Research. However, in a variety of situations we may have additional requirements or knowledge, distinct from the underlying metric, regarding which pairs of points should be clustered together. To capture and analyze such scenarios, we introduce a novel family of \emph{stochastic pairwise constraints}, which we incorporate into several essential clustering objectives (radius/median/means). Moreover, we demonstrate that these constraints can succinctly model an intriguing collection of applications, including among others \emph{Individual Fairness} in clustering and \emph{Must-link} constraints in semi-supervised learning. Our main result consists of a general framework that yields approximation algorithms with provable guarantees for important clustering objectives, while at the same time producing solutions that respect the stochastic pairwise constraints. Furthermore, for certain objectives we devise improved results in the case of Must-link constraints, which are also the best possible from a theoretical perspective. Finally, we present experimental evidence that validates the effectiveness of our algorithms.Comment: This paper appeared in AAAI 202

    Operationalizing Individual Fairness with Pairwise Fair Representations

    No full text
    We revisit the notion of individual fairness proposed by Dwork et al. A central challenge in operationalizing their approach is the difficulty in eliciting a human specification of a similarity metric. In this paper, we propose an operationalization of individual fairness that does not rely on a human specification of a distance metric. Instead, we propose novel approaches to elicit and leverage side-information on equally deserving individuals to counter subordination between social groups. We model this knowledge as a fairness graph, and learn a unified Pairwise Fair Representation (PFR) of the data that captures both data-driven similarity between individuals and the pairwise side-information in fairness graph. We elicit fairness judgments from a variety of sources, including human judgments for two real-world datasets on recidivism prediction (COMPAS) and violent neighborhood prediction (Crime & Communities). Our experiments show that the PFR model for operationalizing individual fairness is practically viable.Comment: To be published in the proceedings of the VLDB Endowment, Vol. 13, Issue.
    • …
    corecore