290 research outputs found

    Metric Dimension Parameterized by Treewidth

    Get PDF
    A resolving set S of a graph G is a subset of its vertices such that no two vertices of G have the same distance vector to S. The Metric Dimension problem asks for a resolving set of minimum size, and in its decision form, a resolving set of size at most some specified integer. This problem is NP-complete, and remains so in very restricted classes of graphs. It is also W[2]-complete with respect to the size of the solution. Metric Dimension has proven elusive on graphs of bounded treewidth. On the algorithmic side, a polytime algorithm is known for trees, and even for outerplanar graphs, but the general case of treewidth at most two is open. On the complexity side, no parameterized hardness is known. This has led several papers on the topic to ask for the parameterized complexity of Metric Dimension with respect to treewidth. We provide a first answer to the question. We show that Metric Dimension parameterized by the treewidth of the input graph is W[1]-hard. More refinedly we prove that, unless the Exponential Time Hypothesis fails, there is no algorithm solving Metric Dimension in time f(pw)n^{o(pw)} on n-vertex graphs of constant degree, with pw the pathwidth of the input graph, and f any computable function. This is in stark contrast with an FPT algorithm of Belmonte et al. [SIAM J. Discrete Math. \u2717] with respect to the combined parameter tl+Delta, where tl is the tree-length and Delta the maximum-degree of the input graph

    Metric Dimension Parameterized By Treewidth

    Get PDF
    A resolving set S of a graph G is a subset of its vertices such that no two vertices of G have the same distance vector to S. The METRIC DIMENSION problem asks for a resolving set of minimum size, and in its decision form, a resolving set of size at most some specified integer. This problem is NP-complete, and remains so in very restricted classes of graphs. It is also W[2]-complete with respect to the size of the solution. METRIC DIMENSION has proven elusive on graphs of bounded treewidth. On the algorithmic side, a polynomial time algorithm is known for trees, and even for outerplanar graphs, but the general case of treewidth at most two is open. On the complexity side, no parameterized hardness is known. This has led several papers on the topic to ask for the parameterized complexity of METRIC DIMENSION with respect to treewidth. We provide a first answer to the question. We show that METRIC DIMENSION parameterized by the treewidth of the input graph is W[1]-hard. More refinedly we prove that, unless the Exponential Time Hypothesis fails, there is no algorithm solving METRIC DIMENSION in time f(pw)no(pw) on n-vertex graphs of constant degree, with pw the pathwidth of the input graph, and f any computable function. This is in stark contrast with an FPT algorithm of Belmonte et al. (SIAM J Discrete Math 31(2):1217–1243, 2017) with respect to the combined parameter tl+Δ, where tl is the tree-length and Δ the maximum-degree of the input graph.publishedVersio

    Bidimensionality and Geometric Graphs

    Full text link
    In this paper we use several of the key ideas from Bidimensionality to give a new generic approach to design EPTASs and subexponential time parameterized algorithms for problems on classes of graphs which are not minor closed, but instead exhibit a geometric structure. In particular we present EPTASs and subexponential time parameterized algorithms for Feedback Vertex Set, Vertex Cover, Connected Vertex Cover, Diamond Hitting Set, on map graphs and unit disk graphs, and for Cycle Packing and Minimum-Vertex Feedback Edge Set on unit disk graphs. Our results are based on the recent decomposition theorems proved by Fomin et al [SODA 2011], and our algorithms work directly on the input graph. Thus it is not necessary to compute the geometric representations of the input graph. To the best of our knowledge, these results are previously unknown, with the exception of the EPTAS and a subexponential time parameterized algorithm on unit disk graphs for Vertex Cover, which were obtained by Marx [ESA 2005] and Alber and Fiala [J. Algorithms 2004], respectively. We proceed to show that our approach can not be extended in its full generality to more general classes of geometric graphs, such as intersection graphs of unit balls in R^d, d >= 3. Specifically we prove that Feedback Vertex Set on unit-ball graphs in R^3 neither admits PTASs unless P=NP, nor subexponential time algorithms unless the Exponential Time Hypothesis fails. Additionally, we show that the decomposition theorems which our approach is based on fail for disk graphs and that therefore any extension of our results to disk graphs would require new algorithmic ideas. On the other hand, we prove that our EPTASs and subexponential time algorithms for Vertex Cover and Connected Vertex Cover carry over both to disk graphs and to unit-ball graphs in R^d for every fixed d

    Hyperbolic intersection graphs and (quasi)-polynomial time

    Full text link
    We study unit ball graphs (and, more generally, so-called noisy uniform ball graphs) in dd-dimensional hyperbolic space, which we denote by Hd\mathbb{H}^d. Using a new separator theorem, we show that unit ball graphs in Hd\mathbb{H}^d enjoy similar properties as their Euclidean counterparts, but in one dimension lower: many standard graph problems, such as Independent Set, Dominating Set, Steiner Tree, and Hamiltonian Cycle can be solved in 2O(n11/(d1))2^{O(n^{1-1/(d-1)})} time for any fixed d3d\geq 3, while the same problems need 2O(n11/d)2^{O(n^{1-1/d})} time in Rd\mathbb{R}^d. We also show that these algorithms in Hd\mathbb{H}^d are optimal up to constant factors in the exponent under ETH. This drop in dimension has the largest impact in H2\mathbb{H}^2, where we introduce a new technique to bound the treewidth of noisy uniform disk graphs. The bounds yield quasi-polynomial (nO(logn)n^{O(\log n)}) algorithms for all of the studied problems, while in the case of Hamiltonian Cycle and 33-Coloring we even get polynomial time algorithms. Furthermore, if the underlying noisy disks in H2\mathbb{H}^2 have constant maximum degree, then all studied problems can be solved in polynomial time. This contrasts with the fact that these problems require 2Ω(n)2^{\Omega(\sqrt{n})} time under ETH in constant maximum degree Euclidean unit disk graphs. Finally, we complement our quasi-polynomial algorithm for Independent Set in noisy uniform disk graphs with a matching nΩ(logn)n^{\Omega(\log n)} lower bound under ETH. This shows that the hyperbolic plane is a potential source of NP-intermediate problems.Comment: Short version appears in SODA 202

    Travelling on Graphs with Small Highway Dimension

    Get PDF
    We study the Travelling Salesperson (TSP) and the Steiner Tree problem (STP) in graphs of low highway dimension. This graph parameter was introduced by Abraham et al. [SODA 2010] as a model for transportation networks, on which TSP and STP naturally occur for various applications in logistics. It was previously shown [Feldmann et al. ICALP 2015] that these problems admit a quasi-polynomial time approximation scheme (QPTAS) on graphs of constant highway dimension. We demonstrate that a significant improvement is possible in the special case when the highway dimension is 1, for which we present a fully-polynomial time approximation scheme (FPTAS). We also prove that STP is weakly NP-hard for these restricted graphs. For TSP we show NP-hardness for graphs of highway dimension 6, which answers an open problem posed in [Feldmann et al. ICALP 2015]

    Hardness of Metric Dimension in Graphs of Constant Treewidth

    Get PDF
    The Metric Dimension problem asks for a minimum-sized resolving set in a given (unweighted, undirected) graph G. Here, a set S ? V(G) is resolving if no two distinct vertices of G have the same distance vector to S. The complexity of Metric Dimension in graphs of bounded treewidth remained elusive in the past years. Recently, Bonnet and Purohit [IPEC 2019] showed that the problem is W[1]-hard under treewidth parameterization. In this work, we strengthen their lower bound to show that Metric Dimension is NP-hard in graphs of treewidth 24

    The parameterized hardness of the k-center problem in transportation networks

    Get PDF
    In this paper we study the hardness of the k-Center problem on inputs that model transportation networks. For the problem, an edge-weighted graph G=(V,E) and an integer k are given and a center set C subseteq V needs to be chosen such that |C|<= k. The aim is to minimize the maximum distance of any vertex in the graph to the closest center. This problem arises in many applications of logistics, and thus it is natural to consider inputs that model transportation networks. Such inputs are often assumed to be planar graphs, low doubling metrics, or bounded highway dimension graphs. For each of these models, parameterized approximation algorithms have been shown to exist. We complement these results by proving that the k-Center problem is W[1]-hard on planar graphs of constant doubling dimension, where the parameter is the combination of the number of centers k, the highway dimension h, and even the treewidth t. Moreover, under the Exponential Time Hypothesis there is no f(k,t,h)* n^{o(t+sqrt{k+h})} time algorithm for any computable function f. Thus it is unlikely that the optimum solution to k-Center can be found efficiently, even when assuming that the input graph abides to all of the above models for transportation networks at once! Additionally we give a simple parameterized (1+{epsilon})-approximation algorithm for inputs of doubling dimension d with runtime (k^k/{epsilon}^{O(kd)})* n^{O(1)}. This generalizes a previous result, which considered inputs in D-dimensional L_q metrics
    corecore