2,454 research outputs found

    Personalized Dialogue Generation with Diversified Traits

    Full text link
    Endowing a dialogue system with particular personality traits is essential to deliver more human-like conversations. However, due to the challenge of embodying personality via language expression and the lack of large-scale persona-labeled dialogue data, this research problem is still far from well-studied. In this paper, we investigate the problem of incorporating explicit personality traits in dialogue generation to deliver personalized dialogues. To this end, firstly, we construct PersonalDialog, a large-scale multi-turn dialogue dataset containing various traits from a large number of speakers. The dataset consists of 20.83M sessions and 56.25M utterances from 8.47M speakers. Each utterance is associated with a speaker who is marked with traits like Age, Gender, Location, Interest Tags, etc. Several anonymization schemes are designed to protect the privacy of each speaker. This large-scale dataset will facilitate not only the study of personalized dialogue generation, but also other researches on sociolinguistics or social science. Secondly, to study how personality traits can be captured and addressed in dialogue generation, we propose persona-aware dialogue generation models within the sequence to sequence learning framework. Explicit personality traits (structured by key-value pairs) are embedded using a trait fusion module. During the decoding process, two techniques, namely persona-aware attention and persona-aware bias, are devised to capture and address trait-related information. Experiments demonstrate that our model is able to address proper traits in different contexts. Case studies also show interesting results for this challenging research problem.Comment: Please contact [zhengyinhe1 at 163 dot com] for the PersonalDialog datase

    ProsocialLearn: D2.3 - 1st system requirements and architecture

    No full text
    This document present the first version of the ProsocialLearn architecture covering the principle definition, the requirement collection, the “business”, “information system”, “technology” architecture as defined in the TOGAF methodology

    I feel you: the design and evaluation of a domotic affect-sensitive spoken conversational agent

    Get PDF
    We describe the work on infusion of emotion into a limited-task autonomous spoken conversational agent situated in the domestic environment, using a need-inspired task-independent emotion model (NEMO). In order to demonstrate the generation of affect through the use of the model, we describe the work of integrating it with a natural-language mixed-initiative HiFi-control spoken conversational agent (SCA). NEMO and the host system communicate externally, removing the need for the Dialog Manager to be modified, as is done in most existing dialog systems, in order to be adaptive. The first part of the paper concerns the integration between NEMO and the host agent. The second part summarizes the work on automatic affect prediction, namely, frustration and contentment, from dialog features, a non-conventional source, in the attempt of moving towards a more user-centric approach. The final part reports the evaluation results obtained from a user study, in which both versions of the agent (non-adaptive and emotionally-adaptive) were compared. The results provide substantial evidences with respect to the benefits of adding emotion in a spoken conversational agent, especially in mitigating users' frustrations and, ultimately, improving their satisfaction

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Towards a Cognitive Architecture for Socially Adaptive Human-Robot Interaction

    Get PDF
    People have a natural predisposition to interact in an adaptive manner with others, by instinctively changing their actions, tones and speech according to the perceived needs of their peers. Moreover, we are not only capable of registering the affective and cognitive state of our partners, but over a prolonged period of interaction we also learn which behaviours are the most appropriate and well-suited for each one of them individually. This universal trait that we share regardless of our different personalities is referred to as social adaptation (adaptability). Humans are always capable of adapting to the others although our personalities may influence the speed and efficacy of the adaptation. This means that in our everyday lives we are accustomed to partake in complex and personalized interactions with our peers. Carrying this ability to personalize to human-robot interaction (HRI) is highly desirable since it would provide user-personalized interaction, a crucial element in many HRI scenarios - interactions with older adults, assistive or rehabilitative robotics, child-robot interaction (CRI), and many others. For a social robot to be able to recreate this same kind of rich, human-like interaction, it should be aware of our needs and affective states and be capable of continuously adapting its behaviour to them. Equipping a robot with these functionalities however is not a straightforward task. A robust approach for solving this is implementing a framework for the robot supporting social awareness and adaptation. In other words, the robot needs to be equipped with the basic cognitive functionalities, which would allow the robot to learn how to select the behaviours that would maximize the pleasantness of the interaction for its peers, while being guided by an internal motivation system that would provide autonomy to its decision-making process. The goal of this research was threefold: attempt to design a cognitive architecture supporting social HRI and implement it on a robotic platform; study how an adaptive framework of this kind would function when tested in HRI studies with users; and explore how including the element of adaptability and personalization in a cognitive framework would in reality affect the users - would it bring an additional richness to the human-robot interaction as hypothesized, or would it instead only add uncertainty and unpredictability that would not be accepted by the robot`s human peers? This thesis covers the work done on developing a cognitive framework for human-robot interaction; analyzes the various challenges of implementing the cognitive functionalities, porting the framework on several robotic platforms and testing potential validation scenarios; and finally presents the user studies performed with the robotic platforms of iCub and MiRo, focused on understanding how a cognitive framework behaves in a free-form HRI context and if humans can be aware and appreciate the adaptivity of the robot. In summary, this thesis had the task of approaching the complex field of cognitive HRI and attempt to shed some light on how cognition and adaptation develop from both the human and the robot side in an HRI scenario

    Emergent Rhythmic Structures as Cultural Phenomena Driven by Social Pressure in a Society of Artificial Agents

    Get PDF
    This thesis studies rhythm from an evolutionary computation perspective. Rhythm is the most fundamental dimension of music and can be used as a ground to describe the evolution of music. More specifically, the main goal of the thesis is to investigate how complex rhythmic structures evolve, subject to the cultural transmission between individuals in a society. The study is developed by means of computer modelling and simulations informed by evolutionary computation and artificial life (A-Life). In this process, self-organisation plays a fundamental role. The evolutionary process is steered by the evaluation of rhythmic complexity and by the exposure to rhythmic material. In this thesis, composers and musicologists will find the description of a system named A-Rhythm, which explores the emerged behaviours in a community of artificial autonomous agents that interact in a virtual environment. The interaction between the agents takes the form of imitation games. A set of necessary criteria was established for the construction of a compositional system in which cultural transmission is observed. These criteria allowed the comparison with related work in the field of evolutionary computation and music. In the development of the system, rhythmic representation is discussed. The proposed representation enabled the development of complexity and similarity based measures, and the recombination of rhythms in a creative manner. A-Rhythm produced results in the form of simulation data which were evaluated in terms of the coherence of repertoires of the agents. The data shows how rhythmic sequences are changed and sustained in the population, displaying synchronic and diachronic diversity. Finally, this tool was used as a generative mechanism for composition and several examples are presented.Leverhulme Trus

    Factors That Enhance Consumer Trust in Human-Computer Interaction: An Examination of Interface Factors and Moderating Influences

    Get PDF
    The Internet coupled with agent technology presents a unique setting to examine consumer trust. Since the Internet is a relatively new, technically complex environment where human-computer interaction (HCI) is the basic communication modality, there is greater perception of risk facing consumers and hence a greater need for trust. In this dissertation, the notion of consumer trust was revisited and conceptually redefined adopting an integrative perspective. A critical test of trust theory revealed its cognitive (i.e., competence, information credibility), affective (i.e., benevolence), and intentional (i.e., trusting intention) constructs. The theoretical relationships among these trust constructs were confirmed through confirmatory factor analysis and structural equation modeling. The primary purpose of this dissertation was to investigate antecedent and moderating factors affecting consumer trust in HCI. This dissertation focused on interface-based antecedents of trust in the agent-assisted shopping context aiming at discovering potential interface strategies as a means to enhance consumer trust in the computer agent. The effects of certain interface design factors including face human-likeliness, script social presence, information richness, and price increase associated with upgrade recommendation by the computer agent were examined for their usefulness in enhancing the affective and cognitive bases for consumer trust. In addition, the role of individual difference factors and situational factors in moderating the relationship between specific types of computer interfaces and consumer trust perceptions was examined. Two experiments were conducted employing a computer agent, Agent John, which was created using MacroMedia Authorware. The results of the two experiments showed that certain interface factors including face and script could affect the affective trust perception. Information richness did not enhance consumers’ cognitive trust perceptions; instead, the percentage of price increase associated with Agent John’s upgrade recommendation affected individuals’ cognitive trust perceptions. Interestingly, the moderating influence of consumer personality (especially feminine orientation) on trust perceptions was significant. The consequences of enhanced consumer trust included increased conversion behavior, satisfaction and retention, and to a lesser extent, self-disclosure behavior. Finally, theoretical and managerial implications as well as future research directions were discussed

    Actors, Avatars and Agents: Potentials and Implications of Natural Face Technology for the Creation of Realistic Visual Presence

    Get PDF
    We are on the cusp of creating realistic, interactive, fully rendered human faces on computers that transcend the “uncanny valley,” widely known for capturing the phenomenon of “eeriness” in faces that are almost, but not fully realistic. Because humans are hardwired to respond to faces in uniquely positive ways, artificial realistic faces hold great promise for advancing human interaction with machines. For example, realistic avatars will enable presentation of human actors in virtual collaboration settings with new levels of realism; artificial natural faces will allow the embodiment of cognitive agents, such as Amazon’s Alexa or Apple’s Siri, putting us on a path to create “artificial human” entities in the near future. In this conceptual paper, we introduce natural face technology (NFT) and its potential for creating realistic visual presence (RVP), a sensation of presence in interaction with a digital actor, as if present with another human. We contribute a forward-looking research agenda to information systems (IS) research, comprising terminology, early conceptual work, concrete ideas for research projects, and a broad range of research questions for engaging with this emerging, transformative technology as it becomes available for application. By doing so, we respond to calls for “blue ocean research” that explores unchartered territory and makes a novel technology accessible to IS early in its application. We outline promising areas of application and foreshadow philosophical, ethical, and conceptual questions for IS research pertaining to the more speculative phenomena of “living with artificial humans.
    corecore