24,874 research outputs found

    AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs

    Full text link
    Stochastic differential equations are an important modeling class in many disciplines. Consequently, there exist many methods relying on various discretization and numerical integration schemes. In this paper, we propose a novel, probabilistic model for estimating the drift and diffusion given noisy observations of the underlying stochastic system. Using state-of-the-art adversarial and moment matching inference techniques, we avoid the discretization schemes of classical approaches. This leads to significant improvements in parameter accuracy and robustness given random initial guesses. On four established benchmark systems, we compare the performance of our algorithms to state-of-the-art solutions based on extended Kalman filtering and Gaussian processes.Comment: Published at the Thirty-sixth International Conference on Machine Learning (ICML 2019

    Numerical methods for multiscale inverse problems

    Full text link
    We consider the inverse problem of determining the highly oscillatory coefficient aϵa^\epsilon in partial differential equations of the form −∇⋅(aϵ∇uϵ)+buϵ=f-\nabla\cdot (a^\epsilon\nabla u^\epsilon)+bu^\epsilon = f from given measurements of the solutions. Here, ϵ\epsilon indicates the smallest characteristic wavelength in the problem (0<ϵ≪10<\epsilon\ll1). In addition to the general difficulty of finding an inverse, the oscillatory nature of the forward problem creates an additional challenge of multiscale modeling, which is hard even for forward computations. The inverse problem in its full generality is typically ill-posed and one common approach is to replace the original problem with an effective parameter estimation problem. We will here include microscale features directly in the inverse problem and avoid ill-posedness by assuming that the microscale can be accurately represented by a low-dimensional parametrization. The basis for our inversion will be a coupling of the parametrization to analytic homogenization or a coupling to efficient multiscale numerical methods when analytic homogenization is not available. We will analyze the reduced problem, b=0b = 0, by proving uniqueness of the inverse in certain problem classes and by numerical examples and also include numerical model examples for medical imaging, b>0b > 0, and exploration seismology, b<0b < 0
    • …
    corecore