1,003,687 research outputs found

    Model-Free Prediction of Adversarial Drop Points in 3D Point Clouds

    Full text link
    Adversarial attacks pose serious challenges for deep neural network (DNN)-based analysis of various input signals. In the case of 3D point clouds, methods have been developed to identify points that play a key role in the network decision, and these become crucial in generating existing adversarial attacks. For example, a saliency map approach is a popular method for identifying adversarial drop points, whose removal would significantly impact the network decision. Generally, methods for identifying adversarial points rely on the deep model itself in order to determine which points are critically important for the model's decision. This paper aims to provide a novel viewpoint on this problem, in which adversarial points can be predicted independently of the model. To this end, we define 14 point cloud features and use multiple linear regression to examine whether these features can be used for model-free adversarial point prediction, and which combination of features is best suited for this purpose. Experiments show that a suitable combination of features is able to predict adversarial points of three different networks -- PointNet, PointNet++, and DGCNN -- significantly better than a random guess. The results also provide further insight into DNNs for point cloud analysis, by showing which features play key roles in their decision-making process.Comment: 10 pages, 6 figure

    Understanding learning from EEG data: Combining machine learning and feature engineering based on hidden Markov models and mixed models

    Full text link
    Theta oscillations, ranging from 4-8 Hz, play a significant role in spatial learning and memory functions during navigation tasks. Frontal theta oscillations are thought to play an important role in spatial navigation and memory. Electroencephalography (EEG) datasets are very complex, making any changes in the neural signal related to behaviour difficult to interpret. However, multiple analytical methods are available to examine complex data structure, especially machine learning based techniques. These methods have shown high classification performance and the combination with feature engineering enhances the capability of these methods. This paper proposes using hidden Markov and linear mixed effects models to extract features from EEG data. Based on the engineered features obtained from frontal theta EEG data during a spatial navigation task in two key trials (first, last) and between two conditions (learner and non-learner), we analysed the performance of six machine learning methods (Polynomial Support Vector Machines, Non-linear Support Vector Machines, Random Forests, K-Nearest Neighbours, Ridge, and Deep Neural Networks) on classifying learner and non-learner participants. We also analysed how different standardisation methods used to pre-process the EEG data contribute to classification performance. We compared the classification performance of each trial with data gathered from the same subjects, including solely coordinate-based features, such as idle time and average speed. We found that more machine learning methods perform better classification using coordinate-based data. However, only deep neural networks achieved an area under the ROC curve higher than 80% using the theta EEG data alone. Our findings suggest that standardising the theta EEG data and using deep neural networks enhances the classification of learner and non-learner subjects in a spatial learning task.Comment: 25 page

    Comparison of hyperspectral coherent Raman scattering microscopies for biomedical applications

    Get PDF
    Raman scattering based imaging represents a very powerful optical tool for biomedical diagnostics. Different Raman signatures obtained by distinct tissue structures and disease induced changes provoke sophisticated analysis of the hyperspectral Raman datasets. While the analysis of linear Raman spectroscopic tissue data is quite established, the evaluation of hyperspectral nonlinear Raman data has not yet been evaluated in great detail. The two most common nonlinear Raman methods are CARS (coherent anti-Stokes Raman scattering) and SRS (stimulated Raman scattering) spectroscopy. Specifically the linear concentration dependence of SRS as compared to the quadratic dependence of CARS has fostered the application of SRS tissue imaging. Here, we applied spectral processing to hyperspectral SRS and CARS data for tissue characterization. We could demonstrate for the first time that similar cluster distributions can be obtained for multispectral CARS and SRS data but that clustering is based on different spectral features due to interference effects in CARS and the different concentration dependence of CARS and SRS. It is shown that a direct combination of CARS and SRS data does not improve the clustering results

    Modeling drug combination effects via latent tensor reconstruction

    Get PDF
    Motivation: Combination therapies have emerged as a powerful treatment modality to overcome drug resistance and improve treatment efficacy. However, the number of possible drug combinations increases very rapidly with the number of individual drugs in consideration, which makes the comprehensive experimental screening infeasible in practice. Machine-learning models offer time- and cost-efficient means to aid this process by prioritizing the most effective drug combinations for further pre-clinical and clinical validation. However, the complexity of the underlying interaction patterns across multiple drug doses and in different cellular contexts poses challenges to the predictive modeling of drug combination effects. Results: We introduce comboLTR, highly time-efficient method for learning complex, non-linear target functions for describing the responses of therapeutic agent combinations in various doses and cancer cell-contexts. The method is based on a polynomial regression via powerful latent tensor reconstruction. It uses a combination of recommender system-style features indexing the data tensor of response values in different contexts, and chemical and multi-omics features as inputs. We demonstrate that comboLTR outperforms state-of-the-art methods in terms of predictive performance and running time, and produces highly accurate results even in the challenging and practical inference scenario where full dose-response matrices are predicted for completely new drug combinations with no available combination and monotherapy response measurements in any training cell line.Peer reviewe

    Arabic Isolated Word Speaker Dependent Recognition System

    Get PDF
    In this thesis we designed a new Arabic isolated word speaker dependent recognition system based on a combination of several features extraction and classifications techniques. Where, the system combines the methods outputs using a voting rule. The system is implemented with a graphic user interface under Matlab using G62 Core I3/2.26 Ghz processor laptop. The dataset used in this system include 40 Arabic words recorded in a calm environment with 5 different speakers using laptop microphone. Each speaker will read each word 8 times. 5 of them are used in training and the remaining are used in the test phase. First in the preprocessing step we used an endpoint detection technique based on energy and zero crossing rates to identify the start and the end of each word and remove silences then we used a discrete wavelet transform to remove noise from signal. In order to accelerate the system and reduce the execution time we make the system first to recognize the speaker and load only the reference model of that user. We compared 5 different methods which are pairwise Euclidean distance with MelFrequency cepstral coefficients (MFCC), Dynamic Time Warping (DTW) with Formants features, Gaussian Mixture Model (GMM) with MFCC, MFCC+DTW and Itakura distance with Linear Predictive Coding features (LPC) and we got a recognition rate of 85.23%, 57% , 87%, 90%, 83% respectively. In order to improve the accuracy of the system, we tested several combinations of these 5 methods. We find that the best combination is MFCC | Euclidean + Formant | DTW + MFCC | DTW + LPC | Itakura with an accuracy of 94.39% but with large computation time of 2.9 seconds. In order to reduce the computation time of this hybrid, we compare several subcombination of it and find that the best performance in trade off computation time is by first combining MFCC | Euclidean + LPC | Itakura and only when the two methods do not match the system will add Formant | DTW + MFCC | DTW methods to the combination, where the average computation time is reduced to the half to 1.56 seconds and the system accuracy is improved to 94.56%. Finally, the proposed system is good and competitive compared with other previous researches

    Robust 2D Joint Sparse Principal Component Analysis with F-Norm Minimization for Sparse Modelling: 2D-RJSPCA

    Full text link
    © 2018 IEEE. Principal component analysis (PCA) is widely used methods for dimensionality reduction and Lots of variants have been proposed to improve the robustness of algorithm, however, these methods suffer from the fact that PCA is linear combination which makes it difficult to interpret complex nonlinear data, and sensitive to outliers or cannot extract features consistently, i.e., collectively; PCA may still require measuring all input features. 2DPCA based on 1-norm has been recently used for robust dimensionality reduction in the image domain but still sensitive to noise. In this paper, we introduce robust formation of 2DPCA by centering the data using the optimized mean for two-dimensional joint sparse as well as effectively combining the robustness of 2DPCA and the sparsity-inducing lasso regularization. Optimal mean helps to improve the robustness of joint sparse PCA further. The distance in spatial dimension is measure in F-norm and sum of different datapoint uses 1-norm. 2DR-JSPCA imposes joint sparse constraints on its objective function whereas additional plenty term help to deal with outliers efficiently. Both theoretical and empirical results on six publicly available benchmark datasets shows that Optimal mean 2DR-JSPCA provides better performance for dimensionality reduction as compare to non-sparse (2DPCA and 2DPCA-L1) and sparse (SPCA, JSPCA)
    • …
    corecore