198 research outputs found

    Design and Implementation of a Middleware for Uniform, Federated and Dynamic Event Processing

    Get PDF
    In recent years, real-time processing of massive event streams has become an important topic in the area of data analytics. It will become even more important in the future due to cheap sensors, a growing amount of devices and their ubiquitous inter-connection also known as the Internet of Things (IoT). Academia, industry and the open source community have developed several event processing (EP) systems that allow users to define, manage and execute continuous queries over event streams. They achieve a significantly better performance than the traditional store-then-process'' approach in which events are first stored and indexed in a database. Because EP systems have different roots and because of the lack of standardization, the system landscape became highly heterogenous. Today's EP systems differ in APIs, execution behaviors and query languages. This thesis presents the design and implementation of a novel middleware that abstracts from different EP systems and provides a uniform API, execution behavior and query language to users and developers. As a consequence, the presented middleware overcomes the problem of vendor lock-in and different EP systems are enabled to cooperate with each other. In practice, event streams differ dramatically in volume and velocity. We show therefore how the middleware can connect to not only different EP systems, but also database systems and a native implementation. Emerging applications such as the IoT raise novel challenges and require EP to be more dynamic. We present extensions to the middleware that enable self-adaptivity which is needed in context-sensitive applications and those that deal with constantly varying sets of event producers and consumers. Lastly, we extend the middleware to fully support the processing of events containing spatial data and to be able to run distributed in the form of a federation of heterogenous EP systems

    Robust Complex Event Pattern Detection over Streams

    Get PDF
    Event stream processing (ESP) has become increasingly important in modern applications. In this dissertation, I focus on providing a robust ESP solution by meeting three major research challenges regarding the robustness of ESP systems: (1) while event constraint of the input stream is available, applying such semantic information in the event processing; (2) handling event streams with out-of-order data arrival and (3) handling event streams with interval-based temporal semantics. The following are the three corresponding research tasks completed by the dissertation: Task I - Constraint-Aware Complex Event Pattern Detection over Streams. In this task, a framework for constraint-aware pattern detection over event streams is designed, which on the fly checks the query satisfiability / unsatisfiability using a lightweight reasoning mechanism and adjusts the processing strategy dynamically by producing early feedback, releasing unnecessary system resources and terminating corresponding pattern monitor. Task II - Complex Event Pattern Detection over Streams with Out-of-Order Data Arrival. In this task, a mechanism to address the problem of processing event queries specified over streams that may contain out-of-order data is studied, which provides new physical implementation strategies for the core stream algebra operators such as sequence scan, pattern construction and negation filtering. Task III - Complex Event Pattern Detection over Streams with Interval-Based Temporal Semantics. In this task, an expressive language to represent the required temporal patterns among streaming interval events is introduced and the corresponding temporal operator ISEQ is designed

    Order-Preserving Pattern Matching Indeterminate Strings

    Get PDF
    Given an indeterminate string pattern p and an indeterminate string text t, the problem of order-preserving pattern matching with character uncertainties (muOPPM) is to find all substrings of t that satisfy one of the possible orderings defined by p. When the text and pattern are determinate strings, we are in the presence of the well-studied exact order-preserving pattern matching (OPPM) problem with diverse applications on time series analysis. Despite its relevance, the exact OPPM problem suffers from two major drawbacks: 1) the inability to deal with indetermination in the text, thus preventing the analysis of noisy time series; and 2) the inability to deal with indetermination in the pattern, thus imposing the strict satisfaction of the orders among all pattern positions. In this paper, we provide the first polynomial algorithms to answer the muOPPM problem when: 1) indetermination is observed on the pattern or text; and 2) indetermination is observed on both the pattern and the text and given by uncertainties between pairs of characters. First, given two strings with the same length m and O(r) uncertain characters per string position, we show that the muOPPM problem can be solved in O(mr lg r) time when one string is indeterminate and r in N^+ and in O(m^2) time when both strings are indeterminate and r=2. Second, given an indeterminate text string of length n, we show that muOPPM can be efficiently solved in polynomial time and linear space
    corecore