4,710 research outputs found

    Methods for simultaneously identifying coherent local clusters with smooth global patterns in gene expression profiles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The hierarchical clustering tree (HCT) with a dendrogram <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> and the singular value decomposition (SVD) with a dimension-reduced representative map <abbrgrp><abbr bid="B2">2</abbr></abbrgrp> are popular methods for two-way sorting the gene-by-array matrix map employed in gene expression profiling. While HCT dendrograms tend to optimize local coherent clustering patterns, SVD leading eigenvectors usually identify better global grouping and transitional structures.</p> <p>Results</p> <p>This study proposes a flipping mechanism for a conventional agglomerative HCT using a rank-two ellipse (R2E, an improved SVD algorithm for sorting purpose) seriation by Chen <abbrgrp><abbr bid="B3">3</abbr></abbrgrp> as an external reference. While HCTs always produce permutations with good local behaviour, the rank-two ellipse seriation gives the best global grouping patterns and smooth transitional trends. The resulting algorithm automatically integrates the desirable properties of each method so that users have access to a clustering and visualization environment for gene expression profiles that preserves coherent local clusters and identifies global grouping trends.</p> <p>Conclusion</p> <p>We demonstrate, through four examples, that the proposed method not only possesses better numerical and statistical properties, it also provides more meaningful biomedical insights than other sorting algorithms. We suggest that sorted proximity matrices for genes and arrays, in addition to the gene-by-array expression matrix, can greatly aid in the search for comprehensive understanding of gene expression structures. Software for the proposed methods can be obtained at <url>http://gap.stat.sinica.edu.tw/Software/GAP</url>.</p

    Expression cartography of human tissues using self organizing maps

    Get PDF
    Background: The availability of parallel, high-throughput microarray and sequencing experiments poses a challenge how to best arrange and to analyze the obtained heap of multidimensional data in a concerted way. Self organizing maps (SOM), a machine learning method, enables the parallel sample- and gene-centered view on the data combined with strong visualization and second-level analysis capabilities. The paper addresses aspects of the method with practical impact in the context of expression analysis of complex data sets.&#xd;&#xa;Results: The method was applied to generate a SOM characterizing the whole genome expression profiles of 67 healthy human tissues selected from ten tissue categories (adipose, endocrine, homeostasis, digestion, exocrine, epithelium, sexual reproduction, muscle, immune system and nervous tissues). SOM mapping reduces the dimension of expression data from ten thousands of genes to a few thousands of metagenes where each metagene acts as representative of a minicluster of co-regulated single genes. Tissue-specific and common properties shared between groups of tissues emerge as a handful of localized spots in the tissue maps collecting groups of co-regulated and co-expressed metagenes. The functional context of the spots was discovered using overrepresentation analysis with respect to pre-defined gene sets of known functional impact. We found that tissue related spots typically contain enriched populations of gene sets well corresponding to molecular processes in the respective tissues. Analysis techniques normally used at the gene-level such as two-way hierarchical clustering provide a better signal-to-noise ratio and a better representativeness of the method if applied to the metagenes. Metagene-based clustering analyses aggregate the tissues into essentially three clusters containing nervous, immune system and the remaining tissues. &#xd;&#xa;Conclusions: The global view on the behavior of a few well-defined modules of correlated and differentially expressed genes is more intuitive and more informative than the separate discovery of the expression levels of hundreds or thousands of individual genes. The metagene approach is less sensitive to a priori selection of genes. It can detect a coordinated expression pattern whose components would not pass single-gene significance thresholds and it is able to extract context-dependent patterns of gene expression in complex data sets.&#xd;&#xa

    Expression cartography of human tissues using self organizing maps

    Get PDF
    Background: The availability of parallel, high-throughput microarray and sequencing experiments poses a challenge how to best arrange and to analyze the obtained heap of multidimensional data in a concerted way. Self organizing maps (SOM), a machine learning method, enables the parallel sample- and gene-centered view on the data combined with strong visualization and second-level analysis capabilities. The paper addresses aspects of the method with practical impact in the context of expression analysis of complex data sets.&#xd;&#xa;Results: The method was applied to generate a SOM characterizing the whole genome expression profiles of 67 healthy human tissues selected from ten tissue categories (adipose, endocrine, homeostasis, digestion, exocrine, epithelium, sexual reproduction, muscle, immune system and nervous tissues). SOM mapping reduces the dimension of expression data from ten thousands of genes to a few thousands of metagenes where each metagene acts as representative of a minicluster of co-regulated single genes. Tissue-specific and common properties shared between groups of tissues emerge as a handful of localized spots in the tissue maps collecting groups of co-regulated and co-expressed metagenes. The functional context of the spots was discovered using overrepresentation analysis with respect to pre-defined gene sets of known functional impact. We found that tissue related spots typically contain enriched populations of gene sets well corresponding to molecular processes in the respective tissues. Analysis techniques normally used at the gene-level such as two-way hierarchical clustering provide a better signal-to-noise ratio and a better representativeness of the method if applied to the metagenes. Metagene-based clustering analyses aggregate the tissues into essentially three clusters containing nervous, immune system and the remaining tissues. &#xd;&#xa;Conclusions: The global view on the behavior of a few well-defined modules of correlated and differentially expressed genes is more intuitive and more informative than the separate discovery of the expression levels of hundreds or thousands of individual genes. The metagene approach is less sensitive to a priori selection of genes. It can detect a coordinated expression pattern whose components would not pass single-gene significance thresholds and it is able to extract context-dependent patterns of gene expression in complex data sets.&#xd;&#xa

    Reordering Hierarchical Tree Based on Bilateral Symmetric Distance

    Get PDF
    BACKGROUND: In microarray data analysis, hierarchical clustering (HC) is often used to group samples or genes according to their gene expression profiles to study their associations. In a typical HC, nested clustering structures can be quickly identified in a tree. The relationship between objects is lost, however, because clusters rather than individual objects are compared. This results in a tree that is hard to interpret. METHODOLOGY/PRINCIPAL FINDINGS: This study proposes an ordering method, HC-SYM, which minimizes bilateral symmetric distance of two adjacent clusters in a tree so that similar objects in the clusters are located in the cluster boundaries. The performance of HC-SYM was evaluated by both supervised and unsupervised approaches and compared favourably with other ordering methods. CONCLUSIONS/SIGNIFICANCE: The intuitive relationship between objects and flexibility of the HC-SYM method can be very helpful in the exploratory analysis of not only microarray data but also similar high-dimensional data

    Biclustering of gene expression data by non-smooth non-negative matrix factorization

    Get PDF
    BACKGROUND: The extended use of microarray technologies has enabled the generation and accumulation of gene expression datasets that contain expression levels of thousands of genes across tens or hundreds of different experimental conditions. One of the major challenges in the analysis of such datasets is to discover local structures composed by sets of genes that show coherent expression patterns across subsets of experimental conditions. These patterns may provide clues about the main biological processes associated to different physiological states. RESULTS: In this work we present a methodology able to cluster genes and conditions highly related in sub-portions of the data. Our approach is based on a new data mining technique, Non-smooth Non-Negative Matrix Factorization (nsNMF), able to identify localized patterns in large datasets. We assessed the potential of this methodology analyzing several synthetic datasets as well as two large and heterogeneous sets of gene expression profiles. In all cases the method was able to identify localized features related to sets of genes that show consistent expression patterns across subsets of experimental conditions. The uncovered structures showed a clear biological meaning in terms of relationships among functional annotations of genes and the phenotypes or physiological states of the associated conditions. CONCLUSION: The proposed approach can be a useful tool to analyze large and heterogeneous gene expression datasets. The method is able to identify complex relationships among genes and conditions that are difficult to identify by standard clustering algorithms

    Bi-clustering of metabolic data using matrix factorization tools

    Get PDF
    Metabolic phenotyping technologies based on Nuclear Magnetic Spectroscopy (NMR) and Mass Spectrometry (MS) generate vast amounts of unrefined data from biological samples. Clustering strategies are frequently employed to provide insight into patterns of relationships between samples and metabolites. Here, we propose the use of a non-negative matrix factorization driven bi-clustering strategy for metabolic phenotyping data in order to discover subsets of interrelated metabolites that exhibit similar behaviour across samples. The proposed strategy incorporates bi-cross validation and statistical segmentation techniques to automatically determine the number and structure of bi-clusters. This alternative approach is in contrast to the widely used conventional clustering approaches that incorporate all molecular peaks for clustering in metabolic studies and require a priori specification of the number of clusters. We perform the comparative analysis of the proposed strategy with other bi-clustering approaches, which were developed in the context of genomics and transcriptomics research. We demonstrate the superior performance of the proposed bi-clustering strategy on both simulated (NMR) and real (MS) bacterial metabolic data

    Methods for protein complex prediction and their contributions towards understanding the organization, function and dynamics of complexes

    Get PDF
    Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organization of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight challenges faced by these methods, in particular detection of sparse and small or sub- complexes and discerning of overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area.Comment: 1 Tabl

    Module Network Inference from a Cancer Gene Expression Data Set Identifies MicroRNA Regulated Modules

    Get PDF
    Background: MicroRNAs (miRNAs) are small RNAs that recognize and regulate mRNA target genes. Multiple lines of evidence indicate that they are key regulators of numerous critical functions in development and disease, including cancer. However, defining the place and function of miRNAs in complex regulatory networks is not straightforward. Systems approaches, like the inference of a module network from expression data, can help to achieve this goal. Methodology/Principal Findings: During the last decade, much progress has been made in the development of robust and powerful module network inference algorithms. In this study, we analyze and assess experimentally a module network inferred from both miRNA and mRNA expression data, using our recently developed module network inference algorithm based on probabilistic optimization techniques. We show that several miRNAs are predicted as statistically significant regulators for various modules of tightly co-expressed genes. A detailed analysis of three of those modules demonstrates that the specific assignment of miRNAs is functionally coherent and supported by literature. We further designed a set of experiments to test the assignment of miR-200a as the top regulator of a small module of nine genes. The results strongly suggest that miR-200a is regulating the module genes via the transcription factor ZEB1. Interestingly, this module is most likely involved in epithelial homeostasis and its dysregulation might contribute to the malignant process in cancer cells. Conclusions/Significance: Our results show that a robust module network analysis of expression data can provide nove

    Probabilistic analysis of the human transcriptome with side information

    Get PDF
    Understanding functional organization of genetic information is a major challenge in modern biology. Following the initial publication of the human genome sequence in 2001, advances in high-throughput measurement technologies and efficient sharing of research material through community databases have opened up new views to the study of living organisms and the structure of life. In this thesis, novel computational strategies have been developed to investigate a key functional layer of genetic information, the human transcriptome, which regulates the function of living cells through protein synthesis. The key contributions of the thesis are general exploratory tools for high-throughput data analysis that have provided new insights to cell-biological networks, cancer mechanisms and other aspects of genome function. A central challenge in functional genomics is that high-dimensional genomic observations are associated with high levels of complex and largely unknown sources of variation. By combining statistical evidence across multiple measurement sources and the wealth of background information in genomic data repositories it has been possible to solve some the uncertainties associated with individual observations and to identify functional mechanisms that could not be detected based on individual measurement sources. Statistical learning and probabilistic models provide a natural framework for such modeling tasks. Open source implementations of the key methodological contributions have been released to facilitate further adoption of the developed methods by the research community.Comment: Doctoral thesis. 103 pages, 11 figure
    corecore