1,524 research outputs found

    NASA Sea Ice Validation Program for the Defense Meteorological Satellite Program Special Sensor Microwave Imager

    Get PDF
    The history of the program is described along with the SSM/I sensor, including its calibration and geolocation correction procedures used by NASA, SSM/I data flow, and the NASA program to distribute polar gridded SSM/I radiances and sea ice concentrations (SIC) on CD-ROMs. Following a discussion of the NASA algorithm used to convert SSM/I radiances to SICs, results of 95 SSM/I-MSS Landsat IC comparisons for regions in both the Arctic and the Antarctic are presented. The Landsat comparisons show that the overall algorithm accuracy under winter conditions is 7 pct. on average with 4 pct. negative bias. Next, high resolution active and passive microwave image mosaics from coordinated NASA and Navy aircraft underflights over regions of the Beaufort and Chukchi seas in March 1988 were used to show that the algorithm multiyear IC accuracy is 11 pct. on average with a positive bias of 12 pct. Ice edge crossings of the Bering Sea by the NASA DC-8 aircraft were used to show that the SSM/I 15 pct. ice concentration contour corresponds best to the location of the initial bands at the ice edge. Finally, a summary of results and recommendations for improving the SIC retrievals from spaceborne radiometers are provided

    Cloud cover determination in polar regions from satellite imagery

    Get PDF
    The principal objectives of this project are: (1) to develop suitable validation data sets to evaluate the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) operational algorithm for cloud retrieval in polar regions and to validate model simulations of polar cloud cover; (2) to identify limitations of current procedures for varying atmospheric surface conditions, and to explore potential means to remedy them using textural classifiers; and (3) to compare synoptic cloud data from a control run experiment of the GISS climate model II with typical observed synoptic cloud patterns

    Arctic–CHAMP: A program to study Arctic hydrology and its role in global change

    Get PDF
    The Arctic constitutes a unique and important environment that is central to the dynamics and evolution of the Earth system. The Arctic water cycle, which controls countless physical, chemical, and biotic processes, is also unique and important. These processes, in turn, regulate the climate, habitat, and natural resources that are of great importance to both native and industrial societies. Comprehensive understanding of water cycling across the Arctic and its linkage to global biogeophysical dynamics is a scientific as well as strategic policy imperative

    Arctic–CHAMP: A program to study Arctic hydrology and its role in global change

    Get PDF
    The Arctic constitutes a unique and important environment that is central to the dynamics and evolution of the Earth system. The Arctic water cycle, which controls countless physical, chemical, and biotic processes, is also unique and important. These processes, in turn, regulate the climate, habitat, and natural resources that are of great importance to both native and industrial societies. Comprehensive understanding of water cycling across the Arctic and its linkage to global biogeophysical dynamics is a scientific as well as strategic policy imperative

    Use of the synoptic view: Examples from Earth and other planets

    Get PDF
    Space technology has added the synoptic view to other techniques used in geomorphology. Synoptic views are provided by spacecraft images or by application of space technology to time-honored information systems. Examples of spacecraft images of Earth are LANDSAT, SEASAT, and the SIR (Shuttle Imaging Radar) series. Examples of applied space technologies include the digital conversion of topographic maps to shaded relief maps and digital correlation methods. From the study of other planets we have learned that synoptic views enable the deciphering of a planet's history: large features are identified and mapped before small ones; studies proceed from the general to the specific. On Earth, we generally recognize smaller features and study specific processes first, then extrapolate toward larger features and a general synthesis. With the advent of space images of Earth, perhaps the time is ripe to employ the methods used for other planets to the study of terrestrial geology and geomorphology. The following examples illustrate the use of regional-scale studies on Earth: the application of synoptic-view images in Antarctica, the use of digital methods and correlations of multiple data sets in regional studies, and some benefits to our understanding of terrestrial geology that have been obtained from analyses of other planets
    • …
    corecore