12 research outputs found

    Programmable retinal dynamics in a CMOS mixed-signal array processor chip

    Get PDF
    The low-level image processing that takes place in the retina is intended to compress the relevant visual information to a manageable size. The behavior of the external layers of the biological retina has been successfully modelled by a Cellular Neural Network, whose evolution can be described by a set of coupled nonlinear differential equations. A mixed-signal VLSI implementation of the focal-plane low-level image processing based upon this biological model constitutes a feasible and cost effective alternative to conventional digital processing in real-time applications. For these reasons, a programmable array processor prototype chip has been designed and fabricated in a standard 0.5μm CMOS technology. The integrated system consists of a network of two coupled layers, containing 32 × 32 elementary processors, running at different time constants. Involved image processing algorithms can be programmed on this chip by tuning the appropriate interconnections weights. Propagative, active wave phenomena and retina-like effects can be observed in this chip. Design challenges, trade-offs, the buildings blocks and some test results are presented in this paper.Office of Naval Research (USA) N00014-00-10429European Community IST-1999-19007Ministerio de Ciencia y Tecnología TIC1999-082

    Brain Disease Detection From EEGS: Comparing Spiking and Recurrent Neural Networks for Non-stationary Time Series Classification

    Get PDF
    Modeling non-stationary time series data is a difficult problem area in AI, due to the fact that the statistical properties of the data change as the time series progresses. This complicates the classification of non-stationary time series, which is a method used in the detection of brain diseases from EEGs. Various techniques have been developed in the field of deep learning for tackling this problem, with recurrent neural networks (RNN) approaches utilising Long short-term memory (LSTM) architectures achieving a high degree of success. This study implements a new, spiking neural network-based approach to time series classification for the purpose of detecting three brain diseases from EEG datasets - epilepsy, alcoholism, and schizophrenia. The performance and training time of the spiking neural network classifier is compared to those of both a baseline RNN-LSTM EEG classifier and the current state-of-the art RNN-LSTM EEG classifier architecture from the relevant literature. The SNN EEG classifier model developed in this study outperforms both the baseline and state of-the-art RNN models in terms of accuracy, and is able to detect all three brain diseases with an accuracy of 100%, while requiring a far smaller number of training data samples than recurrent neural network approaches. This represents the best performance present in the literature for the task of EEG classificatio

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community

    29th Annual Computational Neuroscience Meeting: CNS*2020

    Get PDF
    Meeting abstracts This publication was funded by OCNS. The Supplement Editors declare that they have no competing interests. Virtual | 18-22 July 202

    Model Order Reduction for Modeling the Brain

    Get PDF
    Tässä väitöskirjassa tutkimme Model Order Reduction (MOR) -menetelmien käyttöä aivosimulaatioiden vaatimien laskentaresurssien pienentämiseksi ja laskenta-ajan nopeuttamiseksi. Matemaattinen mallintaminen ja numeeriset menetelmät, kuten simulaatiot, ovat tärkeimpiä työkaluja laskennallisessa neurotieteessä, jossa pyritään ymmärtämään aivojen toimintaa dataa ja teoriaa yhdistämällä. Aivosolujen ja niiden muodostamien soluverkostojen monimutkaisuudesta johtuen tietokonesimulaatiot eivät voi sisältää kaikkia biologisesti realistisia yksityiskohtia. MOR-menetelmiä käyttäen johdamme redusoituja malleja ja näytämme, että niillä on mahdollista approksimoida hermosoluverkostomalleja. Redusoidut mallit saattavat mahdollistaa entistä tarkempien tai suuren mittakaavan hermosoluverkostojen simulaatiot. Valitsimme tähän tutkimukseen redusoinnin kohteiksi useita neurotieteessä rele- vantteja matemaattisia malleja, alkaen synaptisesta viestinnästä aivojen populaatiotason malleihin. Simuloimme malleja numeerisesti ja määritimme matemaattiset vaatimukset MOR-menetelmien soveltamiseksi jokaiseen malliin. Seuraavaksi tunnistimme kullekin mallille sopivat MOR-algoritmit ja toteutimme valitsemamme menetelmät laskennallisesti tehokkaalla tavalla. Lopuksi arvioimme redusoitujen mallien tarkkuutta ja nopeutta. Tutkimuksemme soveltavat MOR-menetelmiä mallityyppeihin, joita ei ole aiemmin tutkittu kyseisillä menetelmillä, laajentaen mahdollisuuksia MORin käyttöön laskennallisessa neurotieteessä sekä myös koneoppimisessa. Tutkimuksemme osoittavat, että MOR voi olla tehokas nopeutusstrategia hermosoluverkostomalleille ja keinotekoisille neuroverkoille, mikä tekee siitä arvokkaan työkalun aivojen laskennallisessa tutkimuksessa. MOR-menetelmät ovat hyödyllisiä, sillä redusoidun mallin perusteella on mahdollista rekonstruoida alkuperäinen malli. Redusointi ei poista mallista muuttujia tai heikennä sen morfologista resoluutiota. Tunnistimme Proper Orthogonal Decom- position (POD) -menetelmän yhdistettynä Discrete Empirical Interpolation Method (DEIM) -algoritmiin sopivaksi menetelmäksi valitsemiemme mallien redusointiin. Lisäksi otimme käyttöön useita viimeaikaisia edistyneitä muunnelmia näistä menetel-mistä. Ensisijainen este MOR-menetelmien soveltamiselle neurotieteessä on hermosolumallien epälineaarisuus. POD-DEIM -menetelmää voidaan käyttää myös epälineaaristen mallien redusointiin. Balanced Truncation ja Iterative Rational Krylovin Approximation -menetelmien muunnelmat epälineaaristen mallien approksimoin- tiin ovat myös lupaavia, mutta niiden käyttö vaatii redusoitavalta mallilta enemmän matemaattisia ominaisuuksia verrattuna POD-DEIM -menetelmiin. Saavutimme erinomaisen approksimaatiotarkkuuden ja nopeutuksen redusoimalla moniulotteista hermosolupopulaatiomallia ja synapsin kemiallisia reaktioita kuvaavaa mallia käyttämällä POD-DEIM -menetelmää. Biofysikaalisesti tarkan verkosto- mallin, joka kuvaa aktiopotentiaalin muodostumista ionivirtojen kautta, redusoinnin huomattiin hyötyvän simulaation aikana redusoitua mallia päivittävien MOR- menetelmien käytöstä. Osoitimme lisäksi, että MOR voidaan integroida syväoppimisverkkoihin ja että MOR on tehokas redusointistrategia konvoluutioverkkoihin, joita käytetään esimerkiksi näköhermoston tutkimuksessa. Tuloksemme osoittavat, että MOR on tehokas työkalu epälineaaristen hermo- soluverkostojen simulaatioiden nopeuttamiseen. Tämän väitöskirjan osajulkaisujen perusteella voimme todeta, että useita neurotieteellisesti relevantteja malleja ja mallityyppejä, joita ei ole aiemmin redusoitu, voidaan nopeuttaa käyttämällä MOR- menetelmiä. Tulevaisuudessa MOR-menetelmien integrointi aivosimulaatiotyökaluihin mahdollistaa mallien nopeamman kehittämisen ja uuden tiedon luomisen numeeristen simulaatioiden tehokkuutta, resoluutiota ja mittakaavaa parantamalla.In this thesis, we study the use of Model Order Reduction (MOR) methods for accelerating and reducing the computational burden of brain simulations. Mathematical modeling and numerical simulations are the primary tools of computational neuroscience, a field that strives to understand the brain by combining data and theories. Due to the complexity of brain cells and the neuronal networks they form, computer simulations cannot consider neuronal networks in biologically realistic detail. We apply MOR methods to derive lightweight reduced order models and show that they can approximate models of neuronal networks. Reduced order models may thus enable more detailed and large-scale simulations of neuronal systems. We selected several mathematical models that are used in neuronal network simulations, ranging from synaptic signaling to neuronal population models, to use as reduction targets in this thesis. We implemented the models and determined the mathematical requirements for applying MOR to each model. We then identified suitable MOR algorithms for each model and established efficient implementations of our selected methods. Finally, we evaluated the accuracy and speed of our reduced order models. Our studies apply MOR to model types that were not previously reduced using these methods, widening the possibilities for use of MOR in computational neuroscience and deep learning. In summary, the results of this thesis show that MOR can be an effective acceleration strategy for neuronal network models, making it a valuable tool for building large-scale simulations of the brain. MOR methods have the advantage that the reduced model can be used to reconstruct the original detailed model, hence the reduction process does not discard variables or decrease morphological resolution. We identified the Proper Orthogonal Decomposition (POD) combined with Discrete Empirical Interpolation Method (DEIM) as the most suitable tool for reducing our selected models. Additionally, we implemented several recent advanced variants of these methods. The primary obstacle of applying MOR in neuroscience is the nonlinearity of neuronal models, and POD-DEIM can account for that complexity. Extensions of the Balanced Truncation and Iterative Rational Krylov Approximation methods for nonlinear systems also show promise, but have stricter requirements than POD-DEIM with regards to the structure of the original model. Excellent accuracy and acceleration were found when reducing a high-dimensional mean-field model of a neuronal network and chemical reactions in the synapse, using the POD-DEIM method. We also found that a biophysical network, which models action potentials through ionic currents, benefits from the use of adaptive MOR methods that update the reduced model during the model simulation phase. We further show that MOR can be integrated to deep learning networks and that MOR is an effective reduction strategy for convolutional networks, used for example in vision research. Our results validate MOR as a powerful tool for accelerating simulations of nonlinear neuronal networks. Based on the original publications of this thesis, we can conclude that several models and model types of neuronal phenomena that were not previously reduced can be successfully accelerated using MOR methods. In the future, integrating MOR into brain simulation tools will enable faster development of models and extracting new knowledge from numerical studies through improved model efficiency, resolution and scale

    Large scale retinal modeling for the design of new generation retinal prostheses

    Get PDF
    With the help of modern technology, blindness caused by retinal diseases such as age-related macular degeneration or retinitis pigmentosa is now considered reversible. Scientists from various fields such as Neuroscience, Electrical Engineering, Computer Science, and Bioscience have been collaborating to design and develop retinal prostheses, with the aim of replacing malfunctioning parts of the retina and restoring vision in the blind. Human trials conducted to test retinal prostheses have yielded encouraging results, showing the potential of this approach in vision recovery. However, a retinal prosthesis has several limitations with regard to its hardware and biological functions, and several attempts have been made to overcome these limitations. This thesis focuses on the biological aspects of retinal prostheses: the biological processes occurring inside the retina and the limitations of retinal prostheses corresponding to those processes have been analysed. Based on these analyses, three major findings regarding information processing inside the retina have been presented and these findings have been used to conceptualise retinal prostheses that have the characteristics of asymmetrical and separate pathway stimulations. In the future, when nanotechnology gains more popularity and is completely integrated inside the prosthesis, this concept can be utilized to restore useful visual information such as colour, depth, and contrast to achieve high-quality vision in the blind

    Large scale retinal modeling for the design of new generation retinal prostheses

    Get PDF
    With the help of modern technology, blindness caused by retinal diseases such as age-related macular degeneration or retinitis pigmentosa is now considered reversible. Scientists from various fields such as Neuroscience, Electrical Engineering, Computer Science, and Bioscience have been collaborating to design and develop retinal prostheses, with the aim of replacing malfunctioning parts of the retina and restoring vision in the blind. Human trials conducted to test retinal prostheses have yielded encouraging results, showing the potential of this approach in vision recovery. However, a retinal prosthesis has several limitations with regard to its hardware and biological functions, and several attempts have been made to overcome these limitations. This thesis focuses on the biological aspects of retinal prostheses: the biological processes occurring inside the retina and the limitations of retinal prostheses corresponding to those processes have been analysed. Based on these analyses, three major findings regarding information processing inside the retina have been presented and these findings have been used to conceptualise retinal prostheses that have the characteristics of asymmetrical and separate pathway stimulations. In the future, when nanotechnology gains more popularity and is completely integrated inside the prosthesis, this concept can be utilized to restore useful visual information such as colour, depth, and contrast to achieve high-quality vision in the blind

    Brain Computer Interfaces and Emotional Involvement: Theory, Research, and Applications

    Get PDF
    This reprint is dedicated to the study of brain activity related to emotional and attentional involvement as measured by Brain–computer interface (BCI) systems designed for different purposes. A BCI system can translate brain signals (e.g., electric or hemodynamic brain activity indicators) into a command to execute an action in the BCI application (e.g., a wheelchair, the cursor on the screen, a spelling device or a game). These tools have the advantage of having real-time access to the ongoing brain activity of the individual, which can provide insight into the user’s emotional and attentional states by training a classification algorithm to recognize mental states. The success of BCI systems in contemporary neuroscientific research relies on the fact that they allow one to “think outside the lab”. The integration of technological solutions, artificial intelligence and cognitive science allowed and will allow researchers to envision more and more applications for the future. The clinical and everyday uses are described with the aim to invite readers to open their minds to imagine potential further developments
    corecore