8,553 research outputs found

    DART-ID increases single-cell proteome coverage.

    Get PDF
    Analysis by liquid chromatography and tandem mass spectrometry (LC-MS/MS) can identify and quantify thousands of proteins in microgram-level samples, such as those comprised of thousands of cells. This process, however, remains challenging for smaller samples, such as the proteomes of single mammalian cells, because reduced protein levels reduce the number of confidently sequenced peptides. To alleviate this reduction, we developed Data-driven Alignment of Retention Times for IDentification (DART-ID). DART-ID implements principled Bayesian frameworks for global retention time (RT) alignment and for incorporating RT estimates towards improved confidence estimates of peptide-spectrum-matches. When applied to bulk or to single-cell samples, DART-ID increased the number of data points by 30-50% at 1% FDR, and thus decreased missing data. Benchmarks indicate excellent quantification of peptides upgraded by DART-ID and support their utility for quantitative analysis, such as identifying cell types and cell-type specific proteins. The additional datapoints provided by DART-ID boost the statistical power and double the number of proteins identified as differentially abundant in monocytes and T-cells. DART-ID can be applied to diverse experimental designs and is freely available at http://dart-id.slavovlab.net

    MSqRob takes the missing hurdle : uniting intensity- and count-based proteomics

    Get PDF
    Missing values are a major issue in quantitative data-dependent mass spectrometry-based proteomics. We therefore present an innovative solution to this key issue by introducing a hurdle model, which is a mixture between a binomial peptide count and a peptide intensity-based model component. It enables dramatically enhanced quantification of proteins with many missing values without having to resort to harmful assumptions for missingness. We demonstrate the superior performance of our method by comparing it with state-of-the-art methods in the field

    Tre note ai Getica

    Get PDF
    Discussion of three passages of the Getic

    Characterization of protein interactions by mass spectrometry and bioinformatics

    Get PDF

    Statistical methods for differential proteomics at peptide and protein level

    Get PDF

    Mass Spectrometry-Based Approaches Toward Absolute Quantitative Proteomics

    Get PDF
    Mass spectrometry has served as a major tool for the discipline of proteomics to catalogue proteins in an unprecedented scale. With chemical and metabolic techniques for stable isotope labeling developed over the past decade, it is now routinely used as a method for relative quantification to provide valuable information on alteration of protein abundance in a proteome-wide scale. More recently, absolute or stoichiometric quantification of proteome is becoming feasible, in particular, with the development of strategies with isotope-labeled standards composed of concatenated peptides. On the other hand, remarkable progress has been also made in label-free quantification methods based on the number of identified peptides. Here we review these mass spectrometry-based approaches for absolute quantification of proteome and discuss their implications
    • …
    corecore