120,260 research outputs found

    Embedding Feature Selection for Large-scale Hierarchical Classification

    Full text link
    Large-scale Hierarchical Classification (HC) involves datasets consisting of thousands of classes and millions of training instances with high-dimensional features posing several big data challenges. Feature selection that aims to select the subset of discriminant features is an effective strategy to deal with large-scale HC problem. It speeds up the training process, reduces the prediction time and minimizes the memory requirements by compressing the total size of learned model weight vectors. Majority of the studies have also shown feature selection to be competent and successful in improving the classification accuracy by removing irrelevant features. In this work, we investigate various filter-based feature selection methods for dimensionality reduction to solve the large-scale HC problem. Our experimental evaluation on text and image datasets with varying distribution of features, classes and instances shows upto 3x order of speed-up on massive datasets and upto 45% less memory requirements for storing the weight vectors of learned model without any significant loss (improvement for some datasets) in the classification accuracy. Source Code: https://cs.gmu.edu/~mlbio/featureselection.Comment: IEEE International Conference on Big Data (IEEE BigData 2016

    Entrepreneurship: what's happening?

    Get PDF
    Much has been said lately about entrepreneurship, so it seems important to leave here some personal analysis on this topic. The issues outlined here result from a work in about a year in which because a personal and professional obligations it was doing some research on these issues. This is an interesting topic that has not yet expired and on which there is much to research, do it is an area where there are many challenges

    Stochastic Substitute Training: A Gray-box Approach to Craft Adversarial Examples Against Gradient Obfuscation Defenses

    Full text link
    It has been shown that adversaries can craft example inputs to neural networks which are similar to legitimate inputs but have been created to purposely cause the neural network to misclassify the input. These adversarial examples are crafted, for example, by calculating gradients of a carefully defined loss function with respect to the input. As a countermeasure, some researchers have tried to design robust models by blocking or obfuscating gradients, even in white-box settings. Another line of research proposes introducing a separate detector to attempt to detect adversarial examples. This approach also makes use of gradient obfuscation techniques, for example, to prevent the adversary from trying to fool the detector. In this paper, we introduce stochastic substitute training, a gray-box approach that can craft adversarial examples for defenses which obfuscate gradients. For those defenses that have tried to make models more robust, with our technique, an adversary can craft adversarial examples with no knowledge of the defense. For defenses that attempt to detect the adversarial examples, with our technique, an adversary only needs very limited information about the defense to craft adversarial examples. We demonstrate our technique by applying it against two defenses which make models more robust and two defenses which detect adversarial examples.Comment: Accepted by AISec '18: 11th ACM Workshop on Artificial Intelligence and Security. Source code at https://github.com/S-Mohammad-Hashemi/SS
    • …
    corecore