1,324 research outputs found

    Methods for a fusion of Optical Coherence Tomography and stereo camera image data

    Get PDF
    This work investigates combination of Optical Coherence Tomography and two cameras, observing a microscopic scene. Stereo vision provides realistic images, but is limited in terms of penetration depth. Optical Coherence Tomography (OCT) enables access to subcutaneous structures, but 3D-OCT volume data do not give the surgeon a familiar view. The extension of the stereo camera setup with OCT imaging combines the benefits of both modalities. In order to provide the surgeon with a convenient integration of OCT into the vision interface, we present an automated image processing analysis of OCT and stereo camera data as well as combined imaging as augmented reality visualization. Therefore, we care about OCT image noise, perform segmentation as well as develop proper registration objects and methods. The registration between stereo camera and OCT results in a Root Mean Square error of 284 μm as average of five measurements. The presented methods are fundamental for fusion of both imaging modalities. Augmented reality is shown as application of the results. Further developments lead to fused visualization of subcutaneous structures, as information of OCT images, into stereo vision. © 2015 SPIE

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Autonomous Tissue Scanning under Free-Form Motion for Intraoperative Tissue Characterisation

    Full text link
    In Minimally Invasive Surgery (MIS), tissue scanning with imaging probes is required for subsurface visualisation to characterise the state of the tissue. However, scanning of large tissue surfaces in the presence of deformation is a challenging task for the surgeon. Recently, robot-assisted local tissue scanning has been investigated for motion stabilisation of imaging probes to facilitate the capturing of good quality images and reduce the surgeon's cognitive load. Nonetheless, these approaches require the tissue surface to be static or deform with periodic motion. To eliminate these assumptions, we propose a visual servoing framework for autonomous tissue scanning, able to deal with free-form tissue deformation. The 3D structure of the surgical scene is recovered and a feature-based method is proposed to estimate the motion of the tissue in real-time. A desired scanning trajectory is manually defined on a reference frame and continuously updated using projective geometry to follow the tissue motion and control the movement of the robotic arm. The advantage of the proposed method is that it does not require the learning of the tissue motion prior to scanning and can deal with free-form deformation. We deployed this framework on the da Vinci surgical robot using the da Vinci Research Kit (dVRK) for Ultrasound tissue scanning. Since the framework does not rely on information from the Ultrasound data, it can be easily extended to other probe-based imaging modalities.Comment: 7 pages, 5 figures, ICRA 202

    Polarization-sensitive optical projection tomography for muscle fiber imaging

    Get PDF
    Optical projection tomography (OPT) is a tool used for three-dimensional imaging of millimeter-scale biological samples, with the advantage of exhibiting isotropic resolution typically in the micron range. OPT can be divided into two types: transmission OPT (tOPT) and emission OPT (eOPT). Compared with eOPT, tOPT discriminates different tissues based on their absorption coefficient, either intrinsic or after specific staining. However, it fails to distinguish muscle fibers whose absorption coefficients are similar to surrounding tissues. To circumvent this problem, in this article we demonstrate a polarization sensitive OPT system which improves the detection and 3D imaging of muscle fibers by using polarized light. We also developed image acquisition and processing protocols that, together with the system, enable the clear visualization of muscles. Experimental results show that the muscle fibers of diaphragm and stomach, difficult to be distinguished in regular tOPT, were clearly displayed in our system, proving its potential use. Moreover, polarization sensitive OPT was fused with tOPT to investigate the stomach tissue comprehensively. Future applications of polarization sensitive OPT could be imaging other fiberlike structures such as myocardium or other tissues presenting high optical anisotropy.This work is supported by the National Basic Research Program of China (973 Program) under Grant 2011CB707700, the National Natural Science Foundation of China under Grant No. 81227901, 61231004, 81501616, 81301346, 81527805 the Chinese Academy of Sciences Fellowship for Young Foreign Scientists under Grant No. 2010Y2GA03, 2013Y1GA0004, the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists under Grant No. 2012T1G0036, 2013T1G0013, the Instrument Developing Project of the Chinese Academy of Sciences under Grant No. YZ201502, YZ201457 and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (XDB02060010). A. Arranz acknowledges support from the Marie Curie Intra-European Fellowship program IEF-2010-275137. J.R. acknowledges support from EC FP7 IMI project PREDICT-TB, the EC FP7 CIG grant HIGH-THROUGHPUT TOMO, and the Spanish MINECO project grant FIS2013-41802-R MESO-IMAGING

    Feature tracking for automated volume of interest stabilization on 4D-OCT images

    Get PDF
    A common representation of volumetric medical image data is the triplanar view (TV), in which the surgeon manually selects slices showing the anatomical structure of interest. In addition to common medical imaging such as MRI or computed tomography, recent advances in the field of optical coherence tomography (OCT) have enabled live processing and volumetric rendering of four-dimensional images of the human body. Due to the region of interest undergoing motion, it is challenging for the surgeon to simultaneously keep track of an object by continuously adjusting the TV to desired slices. To select these slices in subsequent frames automatically, it is necessary to track movements of the volume of interest (VOI). This has not been addressed with respect to 4DOCT images yet. Therefore, this paper evaluates motion tracking by applying state-of-the-art tracking schemes on maximum intensity projections (MIP) of 4D-OCT images. Estimated VOI location is used to conveniently show corresponding slices and to improve the MIPs by calculating thin-slab MIPs. Tracking performances are evaluated on an in-vivo sequence of human skin, captured at 26 volumes per second. Among investigated tracking schemes, our recently presented tracking scheme for soft tissue motion provides highest accuracy with an error of under 2.2 voxels for the first 80 volumes. Object tracking on 4D-OCT images enables its use for sub-epithelial tracking of microvessels for image-guidance. © 2017 SPIE

    Digital ocular fundus imaging: a review

    Get PDF
    Ocular fundus imaging plays a key role in monitoring the health status of the human eye. Currently, a large number of imaging modalities allow the assessment and/or quantification of ocular changes from a healthy status. This review focuses on the main digital fundus imaging modality, color fundus photography, with a brief overview of complementary techniques, such as fluorescein angiography. While focusing on two-dimensional color fundus photography, the authors address the evolution from nondigital to digital imaging and its impact on diagnosis. They also compare several studies performed along the transitional path of this technology. Retinal image processing and analysis, automated disease detection and identification of the stage of diabetic retinopathy (DR) are addressed as well. The authors emphasize the problems of image segmentation, focusing on the major landmark structures of the ocular fundus: the vascular network, optic disk and the fovea. Several proposed approaches for the automatic detection of signs of disease onset and progression, such as microaneurysms, are surveyed. A thorough comparison is conducted among different studies with regard to the number of eyes/subjects, imaging modality, fundus camera used, field of view and image resolution to identify the large variation in characteristics from one study to another. Similarly, the main features of the proposed classifications and algorithms for the automatic detection of DR are compared, thereby addressing computer-aided diagnosis and computer-aided detection for use in screening programs.Fundação para a Ciência e TecnologiaFEDErPrograma COMPET

    Image database system for glaucoma diagnosis support

    Get PDF
    Tato práce popisuje přehled standardních a pokročilých metod používaných k diagnose glaukomu v ranném stádiu. Na základě teoretických poznatků je implementován internetově orientovaný informační systém pro oční lékaře, který má tři hlavní cíle. Prvním cílem je možnost sdílení osobních dat konkrétního pacienta bez nutnosti posílat tato data internetem. Druhým cílem je vytvořit účet pacienta založený na kompletním očním vyšetření. Posledním cílem je aplikovat algoritmus pro registraci intenzitního a barevného fundus obrazu a na jeho základě vytvořit internetově orientovanou tři-dimenzionální vizualizaci optického disku. Tato práce je součásti DAAD spolupráce mezi Ústavem Biomedicínského Inženýrství, Vysokého Učení Technického v Brně, Oční klinikou v Erlangenu a Ústavem Informačních Technologií, Friedrich-Alexander University, Erlangen-Nurnberg.This master thesis describes a conception of standard and advanced eye examination methods used for glaucoma diagnosis in its early stage. According to the theoretical knowledge, a web based information system for ophthalmologists with three main aims is implemented. The first aim is the possibility to share medical data of a concrete patient without sending his personal data through the Internet. The second aim is to create a patient account based on a complete eye examination procedure. The last aim is to improve the HRT diagnostic method with an image registration algorithm for the fundus and intensity images and create an optic nerve head web based 3D visualization. This master thesis is a part of project based on DAAD co-operation between Department of Biomedical Engineering, Brno University of Technology, Eye Clinic in Erlangen and Department of Computer Science, Friedrich-Alexander University, Erlangen-Nurnberg.

    Fusion based analysis of ophthalmologic image data

    Get PDF
    summary:The paper presents an overview of image analysis activities of the Brno DAR group in the medical application area of retinal imaging. Particularly, illumination correction and SNR enhancement by registered averaging as preprocessing steps are briefly described; further mono- and multimodal registration methods developed for specific types of ophthalmological images, and methods for segmentation of optical disc, retinal vessel tree and autofluorescence areas are presented. Finally, the designed methods for neural fibre layer detection and evaluation on retinal images, utilising different combined texture analysis approaches and several types of classifiers, are shown. The results in all the areas are shortly commented on at the respective sections. In order to emphasise methodological aspects, the methods and results are ordered according to consequential phases of processing rather then divided according to individual medical applications

    Intraoperative Optical Coherence Tomography

    Get PDF
    Recently, surgical instruments and imaging technology in ophthalmology have shown a great improvement. However, advances in the field of the operating microscope technology still remained unchanged with the various limitations for the surgeons. Invention of optical coherence tomography (OCT) led to a revolution in the diagnosis and monitoring of numerous anterior and posterior segment pathologies. Recently, OCT has been introduced into the operating room with an impact on the surgeons. In this chapter, we review the evolution of OCT for intraoperative use with its feasibility, surgical impacts, and limitations
    corecore