1,169 research outputs found

    Benchmarking Practical RRM Algorithms for D2D Communications in LTE Advanced

    Full text link
    Device-to-device (D2D) communication integrated into cellular networks is a means to take advantage of the proximity of devices and allow for reusing cellular resources and thereby to increase the user bitrates and the system capacity. However, when D2D (in the 3rd Generation Partnership Project also called Long Term Evolution (LTE) Direct) communication in cellular spectrum is supported, there is a need to revisit and modify the existing radio resource management (RRM) and power control (PC) techniques to realize the potential of the proximity and reuse gains and to limit the interference at the cellular layer. In this paper, we examine the performance of the flexible LTE PC tool box and benchmark it against a utility optimal iterative scheme. We find that the open loop PC scheme of LTE performs well for cellular users both in terms of the used transmit power levels and the achieved signal-to-interference-and-noise-ratio (SINR) distribution. However, the performance of the D2D users as well as the overall system throughput can be boosted by the utility optimal scheme, because the utility maximizing scheme takes better advantage of both the proximity and the reuse gains. Therefore, in this paper we propose a hybrid PC scheme, in which cellular users employ the open loop path compensation method of LTE, while D2D users use the utility optimizing distributed PC scheme. In order to protect the cellular layer, the hybrid scheme allows for limiting the interference caused by the D2D layer at the cost of having a small impact on the performance of the D2D layer. To ensure feasibility, we limit the number of iterations to a practically feasible level. We make the point that the hybrid scheme is not only near optimal, but it also allows for a distributed implementation for the D2D users, while preserving the LTE PC scheme for the cellular users.Comment: 30 pages, submitted for review April-2013. See also: G. Fodor, M. Johansson, D. P. Demia, B. Marco, and A. Abrardo, A joint power control and resource allocation algorithm for D2D communications, KTH, Automatic Control, Tech. Rep., 2012, qC 20120910, http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10205

    Multicell MIMO Communications Relying on Intelligent Reflecting Surfaces

    Get PDF
    Intelligent reflecting surfaces (IRSs) constitute a disruptive wireless communication technique capable of creating a controllable propagation environment. In this paper, we propose to invoke an IRS at the cell boundary of multiple cells to assist the downlink transmission to cell-edge users, whilst mitigating the inter-cell interference, which is a crucial issue in multicell communication systems. We aim for maximizing the weighted sum rate (WSR) of all users through jointly optimizing the active precoding matrices at the base stations (BSs) and the phase shifts at the IRS subject to each BS’s power constraint and unit modulus constraint. Both the BSs and the users are equipped with multiple antennas, which enhances the spectral efficiency by exploiting the spatial multiplexing gain. Due to the nonconvexity of the problem, we first reformulate it into an equivalent one, which is solved by using the block coordinate descent (BCD) algorithm, where the precoding matrices and phase shifts are alternately optimized. The optimal precoding matrices can be obtained in closed form, when fixing the phase shifts. A pair of efficient algorithms are proposed for solving the phase shift optimization problem, namely the Majorization-Minimization (MM) Algorithm and the Complex Circle Manifold (CCM) Method. Both algorithms are guaranteed to converge to at least locally optimal solutions. We also extend the proposed algorithms to the more general multiple-IRS and network MIMO scenarios. Finally, our simulation results confirm the advantages of introducing IRSs in enhancing the cell-edge user performance

    Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt

    Get PDF
    Ensuring that global warming remains 2 emissions reduction. Additionally, 100–900 gigatons CO2 must be removed from the atmosphere by 2100 using a portfolio of CO2 removal (CDR) methods. Ocean afforestation, CDR through basin-scale seaweed farming in the open ocean, is seen as a key component of the marine portfolio. Here, we analyse the CDR potential of recent re-occurring trans-basin belts of the floating seaweed Sargassum in the (sub)tropical North Atlantic as a natural analogue for ocean afforestation. We show that two biogeochemical feedbacks, nutrient reallocation and calcification by encrusting marine life, reduce the CDR efficacy of Sargassum by 20–100%. Atmospheric CO2 influx into the surface seawater, after CO2-fixation by Sargassum, takes 2.5–18 times longer than the CO2-deficient seawater remains in contact with the atmosphere, potentially hindering CDR verification. Furthermore, we estimate that increased ocean albedo, due to floating Sargassum, could influence climate radiative forcing more than Sargassum-CDR. Our analysis shows that multifaceted Earth-system feedbacks determine the efficacy of ocean afforestation

    Phenolic Phytochemicals and Their Antioxidant Activities in Maine-Grown Asian, American-Hybrid, and European Plums

    Get PDF
    Plum fruits of 16 plum cultivars derived from three species, Asian, American-hybrid, and European plums, and one cultivar of an interspecific hybrid between Asian plum and apricot were investigated to identify and quantify two major groups of phenolic phytochemicals, anthocyanins and hydroxycinnamic acids (HCAs) by HPLC–DAD/MS. The plums were harvested from 2014 to 2017. Some cultivars were analyzed through consecutive years to determine year-to-year differences and to evaluate the maturity impacts on the concentration of anthocyanins and HCAs from the partial-ripe stage and tree-ripe stage. Anthocyanins were present in red−purple colored plums, but their profiles varied among cultivars and species. The two major anthocyanins, cyanidin 3−O−glucoside and cyanidin 3−O−rutinoside were detected in most cultivars, but their concentrations varied depending on the levels of their accumulation in the peel and flesh of the fruits. The total anthocyanin concentration was significantly higher in the tree-ripe stage of plums than in the partial-ripe stage of plums but year-to-year difference in harvest date was not significant. In addition, anthocyanin accumulation in each cultivar was affected by the year-to-year differences in weather condition and crop load, but their specific profiles and the proportion of individual anthocyanins was maintained. Overall, cultivar and maturity differences were dominant in anthocyanin accumulation. Hydroxycinnamic acids (HCAs) also varied among cultivars, but they showed distinguishable concentration differences between species, having significantly higher concentrations in European cultivars than Asian and American cultivars. All cultivars had neochlorogenic acid as a major HCA except the two American-hybrids, ‘Alderman’ and ‘Toka’, in which chlorogenic acid was the major HCA. Unlike anthocyanins, total HCA concentration was not dependent on the year of harvest or maturity at harvest. Total phenolic concentrations (TPC) by the Folin−Ciocalteu method and antioxidant activity (AOA) by the DPPH assay were also measured for three years, from 2015 to 2017. The American-hybrid cultivars displayed greater TPCs than Asian and European cultivars despite having lower concentrations of anthocyanins and moderate concentrations of HCAs. On the contrary, the European cultivars had lower TPCs even though they had higher HCA concentrations than other species. Thus, there was no significant relationship between concentrations of anthocyanins or HCAs and TPCs; however, a curvilinear relationship between TPC and AOA was observed with high coefficients R2=0.89, 0.75, and 0.84 in 2015, 2016, and 2017, respectively. Unlike the linear relationship between TPC and AOA observed in most other studies, the curvilinear relationship found in this study likely results because plums with higher TPC have higher AOA, and AOA was affected more by changes at lower values than at higher TPC values. This suggests that the concentration level of TPC may play a role on AOA in plum extracts
    • …
    corecore