6,775 research outputs found

    Imaging genome abnormalities in cancer research

    Get PDF
    Increasing attention is focusing on chromosomal and genome structure in cancer research due to the fact that genomic instability plays a principal role in cancer initiation, progression and response to chemotherapeutic agents. The integrity of the genome (including structural, behavioral and functional aspects) of normal and cancer cells can be monitored with direct visualization by using a variety of cutting edge molecular cytogenetic technologies that are now available in the field of cancer research. Examples are presented in this review by grouping these methodologies into four categories visualizing different yet closely related major levels of genome structures. An integrated discussion is also presented on several ongoing projects involving the illustration of mitotic and meiotic chromatin loops; the identification of defective mitotic figures (DMF), a new type of chromosomal aberration capable of monitoring condensation defects in cancer; the establishment of a method that uses Non-Clonal Chromosomal Aberrations (NCCAs) as an index to monitor genomic instability; and the characterization of apoptosis related chromosomal fragmentations caused by drug treatments

    Errors in chromosome segregation during oogenesis and early embryogenesis

    Get PDF
    Errors in chromosome segregation occurring during human oogenesis and early embryogenesis are very common. Meiotic chromosome development during oogenesis is subdivided into three distinct phases. The crucial events, including meiotic chromosome pairing and recombination, take place from around 11 weeks until birth. Oogenesis is then arrested until ovulation, when the first meiotic division takes place, with the second meiotic division not completed until after fertilization. It is generally accepted that most aneuploid fetal conditions, such as trisomy 21 Down syndrome, are due to maternal chromosome segregation errors. The underlying reasons are not yet fully understood. It is also clear that superimposed on the maternal meiotic chromosome segregation errors, there are a large number of mitotic errors taking place post-zygotically during the first few cell divisions in the embryo. In this chapter, we summarise current knowledge of errors in chromosome segregation during oogenesis and early embryogenesis, with special reference to the clinical implications for successful assisted reproduction

    INTEGRATIVE ANALYSIS OF OMICS DATA IN ADULT GLIOMA AND OTHER TCGA CANCERS TO GUIDE PRECISION MEDICINE

    Get PDF
    Transcriptomic profiling and gene expression signatures have been widely applied as effective approaches for enhancing the molecular classification, diagnosis, prognosis or prediction of therapeutic response towards personalized therapy for cancer patients. Thanks to modern genome-wide profiling technology, scientists are able to build engines leveraging massive genomic variations and integrating with clinical data to identify “at risk” individuals for the sake of prevention, diagnosis and therapeutic interventions. In my graduate work for my Ph.D. thesis, I have investigated genomic sequencing data mining to comprehensively characterise molecular classifications and aberrant genomic events associated with clinical prognosis and treatment response, through applying high-dimensional omics genomic data to promote the understanding of gene signatures and somatic molecular alterations contributing to cancer progression and clinical outcomes. Following this motivation, my dissertation has been focused on the following three topics in translational genomics. 1) Characterization of transcriptomic plasticity and its association with the tumor microenvironment in glioblastoma (GBM). I have integrated transcriptomic, genomic, protein and clinical data to increase the accuracy of GBM classification, and identify the association between the GBM mesenchymal subtype and reduced tumorpurity, accompanied with increased presence of tumor-associated microglia. Then I have tackled the sole source of microglial as intrinsic tumor bulk but not their corresponding neurosphere cells through both transcriptional and protein level analysis using a panel of sphere-forming glioma cultures and their parent GBM samples.FurthermoreI have demonstrated my hypothesis through longitudinal analysis of paired primary and recurrent GBM samples that the phenotypic alterations of GBM subtypes are not due to intrinsic proneural-to-mesenchymal transition in tumor cells, rather it is intertwined with increased level of microglia upon disease recurrence. Collectively I have elucidated the critical role of tumor microenvironment (Microglia and macrophages from central nervous system) contributing to the intra-tumor heterogeneity and accurate classification of GBM patients based on transcriptomic profiling, which will not only significantly impact on clinical perspective but also pave the way for preclinical cancer research. 2) Identification of prognostic gene signatures that stratify adult diffuse glioma patientsharboring1p/19q co-deletions. I have compared multiple statistical methods and derived a gene signature significantly associated with survival by applying a machine learning algorithm. Then I have identified inflammatory response and acetylation activity that associated with malignant progression of 1p/19q co-deleted glioma. In addition, I showed this signature translates to other types of adult diffuse glioma, suggesting its universality in the pathobiology of other subset gliomas. My efforts on integrative data analysis of this highly curated data set usingoptimizedstatistical models will reflect the pending update to WHO classification system oftumorsin the central nervous system (CNS). 3) Comprehensive characterization of somatic fusion transcripts in Pan-Cancers. I have identified a panel of novel fusion transcripts across all of TCGA cancer types through transcriptomic profiling. Then I have predicted fusion proteins with kinase activity and hub function of pathway network based on the annotation of genetically mobile domains and functional domain architectures. I have evaluated a panel of in -frame gene fusions as potential driver mutations based on network fusion centrality hypothesis. I have also characterised the emerging complexity of genetic architecture in fusion transcripts through integrating genomic structure and somatic variants and delineating the distinct genomic patterns of fusion events across different cancer types. Overall my exploration of the pathogenetic impact and clinical relevance of candidate gene fusions have provided fundamental insights into the management of a subset of cancer patients by predicting the oncogenic signalling and specific drug targets encoded by these fusion genes. Taken together, the translational genomic research I have conducted during my Ph.D. study will shed new light on precision medicine and contribute to the cancer research community. The novel classification concept, gene signature and fusion transcripts I have identified will address several hotly debated issues in translational genomics, such as complex interactions between tumor bulks and their adjacent microenvironments, prognostic markers for clinical diagnostics and personalized therapy, distinct patterns of genomic structure alterations and oncogenic events in different cancer types, therefore facilitating our understanding of genomic alterations and moving us towards the development of precision medicine

    Facts, Challenges, Difficulties and Hopes in Single-Cell Biology: Physiopathological Studies

    No full text
    Single-cell approaches are being increasingly used to unravel the many diverse mechanisms underlying biological processes that characterize each cell irrespective of the influx of other cells even within the same tissue. Consequently, the interference of metabolites and nervous stimuli emanating from the circulatory or nervous system in a higher organism like man is avoided. However, while the single-cell approach yields a wealth of data about single-cell metabolism and internal regulatory mechanisms, information about interactions and interrelations among similar or dissimilar cells may remain obscure. Starting from these considerations, here we summarize, without attempting to be exhaustive, some areas in which we think single-cell biological studies could be effective in translational medicine and in other areas of applied sciences. In this short review we describe the facts, challenges and perspectives related to these issues

    Next generation sequencing of exceptional responders with BRAF-mutant melanoma: implications for sensitivity and resistance.

    Get PDF
    BackgroundPatients with BRAF mutation-positive advanced melanoma respond well to matched therapy with BRAF or MEK inhibitors, but often quickly develop resistance.MethodsTumor tissue from ten patients with advanced BRAF mutation-positive melanoma who achieved partial response (PR) or complete response (CR) on BRAF and/or MEK inhibitors was analyzed using next generation sequencing (NGS) assay. Genomic libraries were captured for 3230 exons in 182 cancer-related genes plus 37 introns from 14 genes often rearranged in cancer and sequenced to average median depth of 734X with 99% of bases covered >100X.ResultsThree of the ten patients (median number of prior therapies = 2) attained prolonged CR (duration = 23.6+ to 28.7+ months); seven patients achieved either a PR or a short-lived CR. One patient who achieved CR ongoing at 28.7+ months and had tissue available close to the time of initiating BRAF inhibitor therapy had only a BRAF mutation. Abnormalities in addition to BRAF mutation found in other patients included: mutations in NRAS, APC and NF1; amplifications in BRAF, aurora kinase A, MYC, MITF and MET; deletions in CDKN2A/B and PAX5; and, alterations in RB1 and ATM. Heterogeneity between patients and molecular evolution within patients was noted.ConclusionNGS identified potentially actionable DNA alterations that could account for resistance in patients with BRAF mutation-positive advanced melanoma who achieved a PR or CR but whose tumors later progressed. A subset of patients with advanced melanoma may harbor only a BRAF mutation and achieve a durable CR on BRAF pathway inhibitors

    Tumor Heterogeneity: Mechanisms and Bases for a Reliable Application of Molecular Marker Design

    Get PDF
    Tumor heterogeneity is a confusing finding in the assessment of neoplasms, potentially resulting in inaccurate diagnostic, prognostic and predictive tests. This tumor heterogeneity is not always a random and unpredictable phenomenon, whose knowledge helps designing better tests. The biologic reasons for this intratumoral heterogeneity would then be important to understand both the natural history of neoplasms and the selection of test samples for reliable analysis. The main factors contributing to intratumoral heterogeneity inducing gene abnormalities or modifying its expression include: the gradient ischemic level within neoplasms, the action of tumor microenvironment (bidirectional interaction between tumor cells and stroma), mechanisms of intercellular transference of genetic information (exosomes), and differential mechanisms of sequence-independent modifications of genetic material and proteins. The intratumoral heterogeneity is at the origin of tumor progression and it is also the byproduct of the selection process during progression. Any analysis of heterogeneity mechanisms must be integrated within the process of segregation of genetic changes in tumor cells during the clonal expansion and progression of neoplasms. The evaluation of these mechanisms must also consider the redundancy and pleiotropism of molecular pathways, for which appropriate surrogate markers would support the presence or not of heterogeneous genetics and the main mechanisms responsible. This knowledge would constitute a solid scientific background for future therapeutic planning

    Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements

    Get PDF
    Cancer genomes are frequently characterized by numerical and structural chromosomal abnormalities. Here we integrated a centromere-specific inactivation approach with selection for a conditionally essential gene, a strategy termed CEN-SELECT, to systematically interrogate the structural landscape of mis-segregated chromosomes. We show that single-chromosome mis-segregation into a micronucleus can directly trigger a broad spectrum of genomic rearrangement types. Cytogenetic profiling revealed that mis-segregated chromosomes exhibit 120-fold-higher susceptibility to developing seven major categories of structural aberrations, including translocations, insertions, deletions, and complex reassembly through chromothripsis coupled to classical non-homologous end joining. Whole-genome sequencing of clonally propagated rearrangements identified random patterns of clustered breakpoints with copy-number alterations resulting in interspersed gene deletions and extrachromosomal DNA amplification events. We conclude that individual chromosome segregation errors during mitotic cell division are sufficient to drive extensive structural variations that recapitulate genomic features commonly associated with human disease

    Variation in expression of fetal nucleic acids in maternal blood in pregnancies affected by congenital anomalies

    Get PDF
    The discovery of cell free fetal DNA has opened a new door for non-invasive prenatal screening and diagnosis. Other cell free nucleic acids, like microRNAs, may also be of value in detecting fetal anomalies. miRNAs control developmental processes and may therefore be useful as biomarkers for fetal abnormalities and placental function. We aimed to develop the laboratory skills for reliable analysis of cell free miRNA and to collect some pilot data looking at variation in cell free fetal miRNA expression with fetal abnormality. Blood was collected into three types of collection tubes (EDTA, STRECK and CITRATE) and kept at 4ºC or room temperature up to 96 hours. Six miRNAs, previously defined as being placental specific, were measured using qRT-PCR. Further comparative studies were made between pregnancies affected by fetal abnormality and controls. Optimisation studies using blood from 14 normal pregnancies suggest that cell free miRNAs are best extracted from either STECK (room temperature) or EDTA (4ºC) tubes and that plasma should be extracted within 72 hours. Three miRNAs (miR-518, miR-520 and miR-525) that were previously described as being placental specific were also detected in plasma of three non-pregnant women; miR-525 appeared to be significantly up-regulated in pregnancy. miRNA expression from 16 normal, 15 chromosomally abnormal, 6 cardiac anomalies and 4 neural tube defects were compared. No significant differences in the relative expression of these six miRNAs were seen between control and anomalous pregnancies with the exception of significant up-regulation of miR-520 in two fetuses with hypoplastic left heart syndrome. The results of this study have established the best tube and conditions of blood collections for future investigations into fetal miRNAs
    corecore