5,075 research outputs found

    Energy Efficient and Reliable Wireless Sensor Networks - An Extension to IEEE 802.15.4e

    Get PDF
    Collecting sensor data in industrial environments from up to some tenth of battery powered sensor nodes with sampling rates up to 100Hz requires energy aware protocols, which avoid collisions and long listening phases. The IEEE 802.15.4 standard focuses on energy aware wireless sensor networks (WSNs) and the Task Group 4e has published an amendment to fulfill up to 100 sensor value transmissions per second per sensor node (Low Latency Deterministic Network (LLDN) mode) to satisfy demands of factory automation. To improve the reliability of the data collection in the star topology of the LLDN mode, we propose a relay strategy, which can be performed within the LLDN schedule. Furthermore we propose an extension of the star topology to collect data from two-hop sensor nodes. The proposed Retransmission Mode enables power savings in the sensor node of more than 33%, while reducing the packet loss by up to 50%. To reach this performance, an optimum spatial distribution is necessary, which is discussed in detail

    FPGA-based wireless link emulator for wireless sensor network

    Get PDF

    Development of a Robust Wireless Sensor Mesh and Multi-hop Network

    Get PDF
    Wireless networking has evolved rapidly since the first wireless device was invented. Throughout those years, researchers and engineers are struggling to apply the knowledge of wireless networking in useful ways in real life. Wireless Sensor Network (WSN) has been used in many applications, from habitat surveying to critical monitoring. Reliability of the WSN plays a major role in deciding whether it should be used or not in critical applications instead of using traditional wireless technology or wired networking. This project is solely a research and development of routing algorithm for WSN by using an existing source and straight away finding its weak point in order to apply further improvisation. The existing routing algorithms used are the XMESH and Ad-Hoc On-Demand Vector Routing (AODV)

    Rural Wireless Mesh Network: A Design Methodology

    Full text link
    Wireless Mesh Network is presented as an appealing solution for bridging the digital divide between developed and under-developed regions. But the planning and deployment of these networks are not just a technical matter, since the success depends on many other factors tied to the related region. Although we observe some deployments, to ensure usefulness and sustainability, there is still a need of concrete design process model and proper network planning approach for rural regions, especially in Sub-Saharan Africa. This paper presents a design methodology to provide network connectivity from a landline node in a rural region at very low cost. We propose a methodology composed of ten steps, starting by a deep analysis of the region in order to identify relevant constraints and useful applications to sustain local activities and communication. Approach for planning the physical architecture of the network is based on an indoor-outdoor deployment for reducing the overall cost of the network.Comment: 9 pages, 2 figures, 3 table

    Towards scalable Community Networks topologies

    Get PDF
    Community Networks (CNs) are grassroots bottom-up initiatives that build local infrastructures, normally using Wi-Fi technology, to bring broadband networking in areas with inadequate offer of traditional infrastructures such as ADSL, FTTx or wide-band cellular (LTE, 5G). Albeit they normally operate as access networks to the Internet, CNs are ad-hoc networks that evolve based on local requirements and constraints, often including additional local services on top of Internet access. These networks grow in highly decentralized manner that radically deviates from the top-down network planning practiced in commercial mobile networks, depending, on the one hand, on the willingness of people to participate, and, on the other hand, on the feasibility of wireless links connecting the houses of potential participants with each other. In this paper, we present a novel methodology and its implementation into an automated tool, which enables the exercise of (light) centralized control to the dynamic and otherwise spontaneous CN growth process. The goal of the methodology is influencing the choices to connect a new node to the CN so that it can grow with more balance and to a larger size. Input to our methodology are open source resources about the physical terrain of the CN deployment area, such as Open Street Map and very detailed (less than 1 m resolution) LIDAR-based data about buildings layout and height, as well as technical descriptions and pricing data about off-the-shelf networking devices that are made available by manufacturers. Data related to demographics can be easily added to refine the environment description. With these data at hand, the tool can estimate the technical and economic feasibility of adding new nodes to the CN and actively assist new CN users in selecting proper equipment and CN node(s) to connect with to improve the CN scalability. We test our methodology in four different areas representing standard territorial characterization categories: urban, suburban, intermediate, and rural. In all four cases our tool shows that CNs scale to much larger size using the assisted, network-aware methodology when compared with de facto practices. Results also show that the CNs deployed with the assisted methodology are more balanced and have a lower per-node cost for the same per-node guaranteed bandwidth. Moreover, this is achieved with fewer devices per node, which means that the network is cheaper to build and easier to maintain.Peer ReviewedPostprint (author's final draft

    Development of a Planning and Analysis Tool for Wireless Mesh Network

    Get PDF
    The aim of this project, "Development of Wireless Mesh Network Planning and Analysis Tool", is to create a GUI-oriented modeler for wireless mesh network planning and analysis. The main purpose of network planning is to provide a costeffective solution in term of two objectives which are coverage and capacity. Network planning covers a wide range of issues from coverage (base station or access point) to core network system. It will develop a tool, using Java programming language, which provides functions to help users do planning setting up a desired wireless mesh network and also techniques to analyze the system

    Design and evaluation of a self-configuring wireless mesh network architecture

    Get PDF
    Wireless network connectivity plays an increasingly important role in supporting our everyday private and professional lives. For over three decades, self-organizing wireless multi-hop ad-hoc networks have been investigated as a decentralized replacement for the traditional forms of wireless networks that rely on a wired infrastructure. However, despite the tremendous efforts of the international wireless research community and widespread availability of devices that are able to support these networks, wireless ad-hoc networks are hardly ever used. In this work, the reasons behind this discrepancy are investigated. It is found that several basic theoretical assumptions on ad-hoc networks prove to be wrong when solutions are deployed in reality, and that several basic functionalities are still missing. It is argued that a hierarchical wireless mesh network architecture, in which specialized, multi-interfaced mesh nodes form a reliable multi-hop wireless backbone for the less capable end-user clients is an essential step in bringing the ad-hoc networking concept one step closer to reality. Therefore, in a second part of this work, algorithms increasing the reliability and supporting the deployment and management of these wireless mesh networks are developed, implemented and evaluated, while keeping the observed limitations and practical considerations in mind. Furthermore, the feasibility of the algorithms is verified by experiment. The performance analysis of these protocols and the ability to deploy the developed algorithms on current generation off-the-shelf hardware indicates the successfulness of the followed research approach, which combines theoretical considerations with practical implementations and observations. However, it was found that there are also many pitfalls to using real-life implementation as a research technique. Therefore, in the last part of this work, a methodology for wireless network research using real-life implementation is developed, allowing researchers to generate more reliable protocols and performance analysis results with less effort
    • …
    corecore