932 research outputs found

    A Low Complexity Architecture for Online On-chip Detection and Identification of f-QRS Feature for Remote Personalized Health Care Applications

    Get PDF
    This paper introduces a novel low complexity highly accurate on-chip architecture for the detection of fragmented QRS (f-QRS) feature including notches and local extrema in the QRS complexes and subsequently identifies its various morphologies (Notched S, rsR', RsR' without elevation etc.) under the real-time environment targeting remote personalized health care. The proposed architecture uses the outcome of recently proposed Hybrid feature extraction algorithm (HFEA) [1] Level 3 detailed coefficients and detects and identifies the fragmentation feature from the QRS complex based on the criteria of the positions, and the magnitudes of the extrema (maxima and minima) and notches from the wavelet coefficients with no extra cost in terms of arithmetic complexity. To verify the proposed architecture 100 patients were randomly selected from the MIT-BIH Physio Net PTB database and their ECG was examined by two experienced cardiologists individually and the results were compared with those obtained from the architecture output wherein we have achieved 95 % diagnostic matching

    Personalized reduced 3-lead system formation methodology for Remote Health Monitoring applications and reconstruction of standard 12-lead system

    Get PDF
    Remote Health Monitoring (RHM) applications encounter limitations from technological front viz. bandwidth, storage and transmission time and the medical science front i.e. usage of 2-3 lead systems instead of the standard 12-lead (S12) system. Technological limitations constraint the number of leads to 2-3 while cardiologists accustomed with 12-Lead ECG may find these 2-3 lead systems insufficient for diagnosis. Thus, the aforementioned limitations pose self-contradicting challenges for RHM. A personalized reduced 2/3 lead system is required which can offer equivalent information as contained in S12 system, so as to accurately reconstruct S12 system from reduced lead system for diagnosis. In this paper, we propose a personalized reduced 3-lead (R3L) system formation methodology which employs principal component analysis, thereby, reducing redundancy and increasing SNR ratio, hence, making it suitable for wireless transmission. Accurate S12 system is made available using personalized lead reconstruction methodology, thus addressing medical constraints. Mean R2 statistics values obtained for reconstruction of S12 system from the proposed R3L system using PhysioNet's PTB and TWA databases were 95.63% and 96.37% respectively. To substantiate the superior diagnostic quality of reconstructed leads, root mean square error (RMSE) metrics obtained upon comparing the ECG features extracted from the original and reconstructed leads, using our recently proposed Time Domain Morphology and Gradient (TDMG) algorithm, have been analyzed and discussed. The proposed system does not require any extra electrode or modification in placement positions and hence, can readily find application in computerized ECG machines

    Quantitative Approach to Fragmented QRS in Arrhythmogenic Cardiomyopathy: From Disease towards Asymptomatic Carriers of Pathogenic Variants

    Get PDF
    Fragmented QRS complexes (fQRS) are common in patients with arrhythmogenic cardiomyopathy (ACM). A new method of fQRS quantification may aid early disease detection in pathogenic variant carriers and assessment of prognosis in patients with early stage ACM. Patients with definite ACM (n = 221, 66%), carriers of a pathogenic ACM-associated variant without a definite ACM diagnosis (n = 57, 17%) and control subjects (n = 58, 17%) were included. Quantitative fQRS (Q-fQRS) was defined as the total amount of deflections in the QRS complex in all 12 electrocardiography (ECG) leads. Q-fQRS was scored by a single observer and reproducibility was determined by three independent observers. Q-fQRS count was feasible with acceptable intra- and inter-observer agreement. Q-fQRS count is significantly higher in patients with definite ACM (54 ± 15) and pathogenic variant carriers (55 ± 10) compared to controls (35 ± 5) (p < 0.001). In patients with ACM, Q-fQRS was not associated with sustained ventricular arrhythmia (p = 0.701) at baseline or during follow-up (p = 0.335). Both definite ACM patients and pathogenic variant carriers not fulfilling ACM diagnosis have a higher Q-fQRS than controls. This may indicate that increased Q-fQRS is an early sign of disease penetrance. In concealed and early stages of ACM the role of Q-fQRS for risk stratification is limite

    Multimodal Signal Processing for Diagnosis of Cardiorespiratory Disorders

    Get PDF
    This thesis addresses the use of multimodal signal processing to develop algorithms for the automated processing of two cardiorespiratory disorders. The aim of the first application of this thesis was to reduce false alarm rate in an intensive care unit. The goal was to detect five critical arrhythmias using processing of multimodal signals including photoplethysmography, arterial blood pressure, Lead II and augmented right arm electrocardiogram (ECG). A hierarchical approach was used to process the signals as well as a custom signal processing technique for each arrhythmia type. Sleep disorders are a prevalent health issue, currently costly and inconvenient to diagnose, as they normally require an overnight hospital stay by the patient. In the second application of this project, we designed automated signal processing algorithms for the diagnosis of sleep apnoea with a main focus on the ECG signal processing. We estimated the ECG-derived respiratory (EDR) signal using different methods: QRS-complex area, principal component analysis (PCA) and kernel PCA. We proposed two algorithms (segmented PCA and approximated PCA) for EDR estimation to enable applying the PCA method to overnight recordings and rectify the computational issues and memory requirement. We compared the EDR information against the chest respiratory effort signals. The performance was evaluated using three automated machine learning algorithms of linear discriminant analysis (LDA), extreme learning machine (ELM) and support vector machine (SVM) on two databases: the MIT PhysioNet database and the St. Vincent’s database. The results showed that the QRS area method for EDR estimation combined with the LDA classifier was the highest performing method and the EDR signals contain respiratory information useful for discriminating sleep apnoea. As a final step, heart rate variability (HRV) and cardiopulmonary coupling (CPC) features were extracted and combined with the EDR features and temporal optimisation techniques were applied. The cross-validation results of the minute-by-minute apnoea classification achieved an accuracy of 89%, a sensitivity of 90%, a specificity of 88%, and an AUC of 0.95 which is comparable to the best results reported in the literature

    Real-time ventricular cancellation in unipolar atrial fibrillation electrograms

    Get PDF
    Unipolar atrial fibrillation (AF) electrograms (EGMs) require far-field ventricle cancellation to recover hidden atrial activations. Current methods cannot achieve real-time cancellation because of the temporal delay they introduce. We propose a new real-time ventricular cancellation (RVC) method based on causal implementation optimized for real-time functioning. The method is similar to the classical average beat subtraction (ABS) method but it computes the ventricular contribution before the ventricular activation finishes. We compare the proposed method to the ABS on synthetic and real EGM databases for the time and frequency domains. All parameters and their optimal values are analyzed and validated. The RVC method provides a good reconstruction of the unipolar EGMs and a better local activation time detection than the classical approach with average F1scores 0.7307 and 0.7125, respectively. The spectral analysis shows that the average power after ventricular cancellation is reduced for frequency bands between 3 and 5.5 Hz, demonstrating that the proposed method removes the ventricular component present in the unipolar EGM signals compared to the ABS method. The phase mapping analysis on the RVC method presented lower error when comparing the annotated EGM cycles with the phase inversion intervals. In terms of performance ABS and RVC behave similarly, but the real-time capability of the latter justifies its preference over the offline implementations. In the clinical environment other online investigations, e.g., rotational activity assessment, dominant frequency or local activation time mapping, might benefit from the real-time potential of the proposed cancellation method.This study was supported by grants PI18/01895 from the Instituto de Salud Carlos III, and RD16/0011/0029 Red de Terapia Celular from the Instituto de Salud Carlos III, projects RTI2018-099655-B-I00; TEC2017-92552-EXP from Ministerio de Ciencia, Innovación y Universidades, Y2018/TCS-4705, PRACTICO-CM Comunidad de Madrid, and the support of NVIDIA Corporation with the donation of the Titan V GPU used during this research

    MS

    Get PDF
    thesisThe efficacy of arrhythmia detection by Coronary Care (CCU) nurses monitoring patients for 24 hours via telemetry was determined utilizing simultaneous Holter monitoring as a baseline. The medical records of 45 male patients were retrospectively reviewed. A total of 247 significant arrhythmias occurred as documented by Holter Monitoring of which 127 were documented by CCU nurses via telemetry, a 49.4% detection rate. Significant arrythmias were categorized as 1) Sinus (87.8% detected), b) Atrial (26.9& detected), c) Ventricular (38.1% detected), and d) Atrioventricular Block (33.3% detected). A comparison of arrhythmias detected between Holter monitoring and telemetry using paired t-test indicated a p value less than or equal to 0.001. Within the 45 records there were 141 physician requests for arrhythmia detection. Thirty arrhythmias actually occurred and CCU nurses documented 13 of them (43.3% detected). CCU nurses documented 114 arrhythmias which hand not been requested by physician order (50.2% detected), The sample (N=45) was divided into two groups: Group A, subjects who had never been in the CCU (N=23); and Group B subjects who had been admitted in the CCU (N=22) prior to monitoring by telemetry and Holter monitoring. The arrhythmia detection rate for Group A was 50.4% with a detection rate of 48.4% for Group B. These arrhythmias were associated with symptoms recorded by subjects in their log books. CCU nurses documented two of the symptomatic arrhythmias with strip recordings but no symptoms were narrated in the patient record. A total of 275 rhythm strips was representative of 127 significant arrhythmias: 17.5% (N-48) gad the rate narratively documented, 9.1% (N-25) had the rhythm identified in writing, and 0.4% (N=1) had the lead placement identified

    The Application of Computer Techniques to ECG Interpretation

    Get PDF
    This book presents some of the latest available information on automated ECG analysis written by many of the leading researchers in the field. It contains a historical introduction, an outline of the latest international standards for signal processing and communications and then an exciting variety of studies on electrophysiological modelling, ECG Imaging, artificial intelligence applied to resting and ambulatory ECGs, body surface mapping, big data in ECG based prediction, enhanced reliability of patient monitoring, and atrial abnormalities on the ECG. It provides an extremely valuable contribution to the field

    Development of a Novel Dataset and Tools for Non-Invasive Fetal Electrocardiography Research

    Get PDF
    This PhD thesis presents the development of a novel open multi-modal dataset for advanced studies on fetal cardiological assessment, along with a set of signal processing tools for its exploitation. The Non-Invasive Fetal Electrocardiography (ECG) Analysis (NInFEA) dataset features multi-channel electrophysiological recordings characterized by high sampling frequency and digital resolution, maternal respiration signal, synchronized fetal trans-abdominal pulsed-wave Doppler (PWD) recordings and clinical annotations provided by expert clinicians at the time of the signal collection. To the best of our knowledge, there are no similar dataset available. The signal processing tools targeted both the PWD and the non-invasive fetal ECG, exploiting the recorded dataset. About the former, the study focuses on the processing aimed at the preparation of the signal for the automatic measurement of relevant morphological features, already adopted in the clinical practice for cardiac assessment. To this aim, a relevant step is the automatic identification of the complete and measurable cardiac cycles in the PWD videos: a rigorous methodology was deployed for the analysis of the different processing steps involved in the automatic delineation of the PWD envelope, then implementing different approaches for the supervised classification of the cardiac cycles, discriminating between complete and measurable vs. malformed or incomplete ones. Finally, preliminary measurement algorithms were also developed in order to extract clinically relevant parameters from the PWD. About the fetal ECG, this thesis concentrated on the systematic analysis of the adaptive filters performance for non-invasive fetal ECG extraction processing, identified as the reference tool throughout the thesis. Then, two studies are reported: one on the wavelet-based denoising of the extracted fetal ECG and another one on the fetal ECG quality assessment from the analysis of the raw abdominal recordings. Overall, the thesis represents an important milestone in the field, by promoting the open-data approach and introducing automated analysis tools that could be easily integrated in future medical devices
    corecore