7,523 research outputs found

    Modelling human teaching tactics and strategies for tutoring systems

    Get PDF
    One of the promises of ITSs and ILEs is that they will teach and assist learning in an intelligent manner. Historically this has tended to mean concentrating on the interface, on the representation of the domain and on the representation of the student’s knowledge. So systems have attempted to provide students with reifications both of what is to be learned and of the learning process, as well as optimally sequencing and adjusting activities, problems and feedback to best help them learn that domain. We now have embodied (and disembodied) teaching agents and computer-based peers, and the field demonstrates a much greater interest in metacognition and in collaborative activities and tools to support that collaboration. Nevertheless the issue of the teaching competence of ITSs and ILEs is still important, as well as the more specific question as to whether systems can and should mimic human teachers. Indeed increasing interest in embodied agents has thrown the spotlight back on how such agents should behave with respect to learners. In the mid 1980s Ohlsson and others offered critiques of ITSs and ILEs in terms of the limited range and adaptability of their teaching actions as compared to the wealth of tactics and strategies employed by human expert teachers. So are we in any better position in modelling teaching than we were in the 80s? Are these criticisms still as valid today as they were then? This paper reviews progress in understanding certain aspects of human expert teaching and in developing tutoring systems that implement those human teaching strategies and tactics. It concentrates particularly on how systems have dealt with student answers and how they have dealt with motivational issues, referring particularly to work carried out at Sussex: for example, on responding effectively to the student’s motivational state, on contingent and Vygotskian inspired teaching strategies and on the plausibility problem. This latter is concerned with whether tactics that are effectively applied by human teachers can be as effective when embodied in machine teachers

    Intelligent computer-aided training and tutoring

    Get PDF
    Specific autonomous training systems based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground-based support personnel that demonstrate an alternative to current training systems are described. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer-Aided Training (ICAT) systems would provide, for the trainee, much of the same experience that could be gained from the best on-the-job training. By integrating domain expertise with a knowledge of appropriate training methods, an ICAT session should duplicate, as closely as possible, the trainee undergoing on-the-job training in the task environment, benefitting from the full attention of a task expert who is also an expert trainer. Thus, the philosophy of the ICAT system is to emulate the behavior of an experienced individual devoting his full time and attention to the training of a novice - proposing challenging training scenarios, monitoring and evaluating the actions of the trainee, providing meaningful comments in response to trainee errors, responding to trainee requests for information, giving hints (if appropriate), and remembering the strengths and weaknesses displayed by the trainee so that appropriate future exercises can be designed

    Intelligent tutoring systems for systems engineering methodologies

    Get PDF
    The general goal is to provide the technology required to build systems that can provide intelligent tutoring in IDEF (Integrated Computer Aided Manufacturing Definition Method) modeling. The following subject areas are covered: intelligent tutoring systems for systems analysis methodologies; IDEF tutor architecture and components; developing cognitive skills for IDEF modeling; experimental software; and PC based prototype

    Intelligent tutoring systems for space applications

    Get PDF
    Artificial Intelligence has been used in many space applications. Intelligent tutoring systems (ITSs) have only recently been developed for assisting training of space operations and skills. An ITS at Southwest Research Institute is described as an example of an ITS application for space operations, specifically, training console operations at mission control. A distinction is made between critical skills and knowledge versus routine skills. Other ITSs for space are also discussed and future training requirements and potential ITS solutions are described

    OFMTutor: An operator function model intelligent tutoring system

    Get PDF
    The design, implementation, and evaluation of an Operator Function Model intelligent tutoring system (OFMTutor) is presented. OFMTutor is intended to provide intelligent tutoring in the context of complex dynamic systems for which an operator function model (OFM) can be constructed. The human operator's role in such complex, dynamic, and highly automated systems is that of a supervisory controller whose primary responsibilities are routine monitoring and fine-tuning of system parameters and occasional compensation for system abnormalities. The automated systems must support the human operator. One potentially useful form of support is the use of intelligent tutoring systems to teach the operator about the system and how to function within that system. Previous research on intelligent tutoring systems (ITS) is considered. The proposed design for OFMTutor is presented, and an experimental evaluation is described

    A generic architecture for interactive intelligent tutoring systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 07/06/2001.This research is focused on developing a generic intelligent architecture for an interactive tutoring system. A review of the literature in the areas of instructional theories, cognitive and social views of learning, intelligent tutoring systems development methodologies, and knowledge representation methods was conducted. As a result, a generic ITS development architecture (GeNisa) has been proposed, which combines the features of knowledge base systems (KBS) with object-oriented methodology. The GeNisa architecture consists of the following components: a tutorial events communication module, which encapsulates the interactive processes and other independent computations between different components; a software design toolkit; and an autonomous knowledge acquisition from a probabilistic knowledge base. A graphical application development environment includes tools to support application development, and learning environments and which use a case scenario as a basis for instruction. The generic architecture is designed to support client-side execution in a Web browser environment, and further testing will show that it can disseminate applications over the World Wide Web. Such an architecture can be adapted to different teaching styles and domains, and reusing instructional materials automatically can reduce the effort of the courseware developer (hence cost and time) in authoring new materials. GeNisa was implemented using Java scripts, and subsequently evaluated at various commercial and academic organisations. Parameters chosen for the evaluation include quality of courseware, relevancy of case scenarios, portability to other platforms, ease of use, content, user-friendliness, screen display, clarity, topic interest, and overall satisfaction with GeNisa. In general, the evaluation focused on the novel characteristics and performances of the GeNisa architecture in comparison with other ITS and the results obtained are discussed and analysed. On the basis of the experience gained during the literature research and GeNisa development and evaluation. a generic methodology for ITS development is proposed as well as the requirements for the further development of ITS tools. Finally, conclusions are drawn and areas for further research are identified

    Applications of Artificial Intelligence in Military Training Simulation

    Get PDF
    This report is a survey of Artificial Intelligence (AI) technology contributions to military training. It provides an overview of military training simulation and a review of instructional problems and challenges which can be addressed by AI. The survey includes current as well as potential applications of AI, with particular emphasis on design and system integration issues. Applications include knowledge and skills training in strategic planning and decision making, tactical warfare operations, electronics maintenance and repair, as well as computer-aided design of training systems. The report describes research contributions in the application of AI technology to the training world, and it concludes with an assessment of future research directions in this area

    Applications of artificial intelligence within education

    Get PDF
    AbstractComputers have been employed within the field of education for many years, often with disappointing results. However, recent and current research within the field of artificial intelligence (AI) is having a positive impact on educational applications. For example, there now exist ICAI (intelligent computer-assisted instruction) systems to teach or tutor many different subjects; several such systems are discussed herein. In addition to CAI (computer-assisted instruction) systems, we discuss the development of learning environments that are designed to facilitate student-initiated learning. A third major application is the use of expert systems to assist with educational diagnosis and assessment. During the course of our discussion of these three major application areas, we indicate where AI has already played a major role in the development of such systems and where further research is required in order to overcome current limitations

    Construals as a complement to intelligent tutoring systems in medical education

    Get PDF
    This is a preliminary version of a report prepared by Meurig and Will Beynon in conjunction with a poster paper "Mediating Intelligence through Observation, Dependency and Agency in Making Construals of Malaria" at the 11th International Conference on Intelligent Tutoring Systems (ITS 2012) and a paper "Construals to Support Exploratory and Collaborative Learning in Medicine" at the associated workshop on Intelligent Support for Exploratory Environments (ISEE 2012). A final version of the report will be published at a later stage after feedback from presentations at these events has been taken into account, and the experimental versions of the JS-EDEN interpreter used in making construals have been developed to a more mature and stable form
    corecore