381 research outputs found

    A Survey on Spoofing and Selective Forwarding Attacks on Zigbee based WSN

    Get PDF
    The main focus of WSN is to gather data from the physical world. It is often deployed for sensing, processing as well as disseminating information of the targeted physical environments. The main objective of the WSN is to collect data from the target environment using sensors as well as transmit those data to the desired place of choice. In order to achieve an efficient performance, WSN should have efficient as well as reliable networking protocols. The most popular technology behind WSN is Zigbee. In this paper a pilot study is done on important security issues on spoofing and selective forwarding attack on Zigbee based WSN. This paper identifies the security vulnerabilities of Zigbee network and gaps in the existing methodologies to address the security issues and will help the future researchers to narrow down their research in WSN.Keywords: Zigbee, WSN, Protocol Stack, Spoofing and Selective Forwarding

    Ethical Hacking Using Penetration Testing

    Get PDF
    This thesis provides details of the hardware architecture and the software scripting, which are employed to demonstrate penetration testing in a laboratory setup. The architecture depicts an organizational computing asset or an environment.¬¬¬ With the increasing number of cyber-attacks throughout the world, the network security is becoming an important issue. This has motivated a large number of “ethical hackers” to indulge and develop methodologies and scripts to defend against the security attacks. As it is too onerous to maintain and monitor attacks on individual hardware and software in an organization, the demand for the new ways to manage security systems invoked the idea of penetration testing. Many research groups have designed algorithms depending on the size, type and purpose of application to secure networks [55]. In this thesis, we create a laboratory setup replicating an organizational infrastructure to study penetration testing on real time server-client atmosphere. To make this possible, we have used Border Gateway Protocol (BGP) as routing protocol as it is widely used in current networks. Moreover, BGP exhibits few vulnerabilities of its own and makes the security assessment more promising. Here, we propose (a) computer based attacks and (b) actual network based attacks including defense mechanisms. The thesis, thus, describes the way penetration testing is accomplished over a desired BGP network. The procedural generation of the packets, exploit, and payloads involve internal and external network attacks. In this thesis, we start with the details of all sub-fields in the stream of penetration testing, including their requirements and outcomes. As an informative and learning research, this thesis discusses the types of attacks over the routers, switches and physical client machines. Our work also deals with the limitations of the implementation of the penetration testing, discussing over the vulnerabilities of the current standards in the technology. Furthermore, we consider the possible methodologies that require attention in order to accomplish most efficient outcomes with the penetration testing. Overall, this work has provided a great learning opportunity in the area of ethical hacking using penetration testing

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Metodologias para monitorização integrada de redes

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesDada a import^ancia que as redes assumem nos dias de hoje, e fundamental garantir comunica c~oes sem falhas e, nesta area, a gest~ao de redes tem tido um papel crucial atrav es da utiliza c~ao de diversas ferramentas de monitoriza c~ao. A camada de Dados e a camada de Rede do modelo OSI usam, respectivamente, endere cos MAC e endere cos IP para proporcionar a comunica c~ao entre os diferentes dispositivos de rede. Uma vez que este e um modelo bastante usado, e frequentemente explorado para actividades maliciosas. Ataques de IP spoo ng e MAC spoo ng s~ao fonte de v arias amea cas a seguran ca das redes, pelo que prevenir estes ataques e essencial para se obter uma rede protegida e de con an ca. Esta disserta c~ao apresenta alguns mecanismos e cientes de apoio a administra c~ao de rede atrav es da realiza c~ao de tarefas de monitoriza c~ao espec cas baseadas no uso do protocolo SNMP, que e suportado por grande parte do equipamento de rede existente no mercado. O SNMP permite aceder remotamente aos dispositivos de rede e obter informa c~ao contida nas suas MIBs. Numa primeira etapa, foi proposto um algoritmo de descoberta da topologia da rede que permite identi car os dispositivos presentes nesta, tal como obter informa c~ao util da rede atrav es da sele c~ao e manipula c~ao da informa c~ao da MIB; de seguida, e seguindo o mesmo princ pio, foi apresentado um algoritmo para detetar ataques de MAC spoo ng e IP spoo ng. Foram realizados v arios testes de avalia c~ao de desempenho e os resultados obtidos provaram que as metodologias desenvolvidas fornecem um conjunto completo de ferramentas de monitoriza c~ao de redes capaz de encontrar qualquer dispositivo que suporte SNMP e de rapidamente e e cientemente detetar e bloquear ataques de MAC spoo ng e IP spoo ng.Due to the importance of communication networks on current days, it is essential to ensure seamless communications. Network management has a crucial role in this area, through the use of many monitoring tools. The Data Link and Network layers of the OSI model use, respectively, MAC addresses and IP addresses to provide communication between the di erent network devices. Since this is a widely used model, it is frequently explored for various malicious activities. IP spoo ng and MAC spoo ng attacks are the origin of many security threats, so preventing them is essential to obtain a protected and trustful network. This dissertation presents some e cient mechanisms to support network administration by performing speci c monitoring tasks, based on the use of SNMP protocol, which is supported by most of the existing network equipment. SNMP allows to remotely access network devices and retrieve information contained in their MIBs. On a rst stage, this Thesis proposes a network discovery algorithm that allows identifying the devices present on the network as well as obtaining useful network information by selecting and manipulating the MIB information; then, following the same principle, the Thesis presentes an algorithm to detect both IP and MAC spoo ng attacks. Many performance evaluation tests were conducted and the obtained results proved that the developed methodologies provide a complete set of network monitoring tools that are able to nd any network device that supports SNMP and quickly and e ciently detect and block MAC and IP spoo ng attacks

    A Review on Distributed Denial of Service Attack On Network Traffic

    Get PDF
    Distributed Denial of Service (DDoS) attacks is the most difficult issues for network security. The attacker utilizes vast number of traded off hosts to dispatch attack on victim. Different DDoS defense components go for distinguishing and keeping the attack traffic. The adequacy relies upon the purpose of sending. The reason for this paper is to examine different detection and defense mechanism, their execution and deployment attributes. This helps in understanding which barrier ought to be sent under what conditions and at what areas

    Improving the accuracy of spoofed traffic inference in inter-domain traffic

    Get PDF
    Ascertaining that a network will forward spoofed traffic usually requires an active probing vantage point in that network, effectively preventing a comprehensive view of this global Internet vulnerability. We argue that broader visibility into the spoofing problem may lie in the capability to infer lack of Source Address Validation (SAV) compliance from large, heavily aggregated Internet traffic data, such as traffic observable at Internet Exchange Points (IXPs). The key idea is to use IXPs as observatories to detect spoofed packets, by leveraging Autonomous System (AS) topology knowledge extracted from Border Gateway Protocol (BGP) data to infer which source addresses should legitimately appear across parts of the IXP switch fabric. In this thesis, we demonstrate that the existing literature does not capture several fundamental challenges to this approach, including noise in BGP data sources, heuristic AS relationship inference, and idiosyncrasies in IXP interconnec- tivity fabrics. We propose Spoofer-IX, a novel methodology to navigate these challenges, leveraging Customer Cone semantics of AS relationships to guide precise classification of inter-domain traffic as In-cone, Out-of-cone ( spoofed ), Unverifiable, Bogon, and Unas- signed. We apply our methodology on extensive data analysis using real traffic data from two distinct IXPs in Brazil, a mid-size and a large-size infrastructure. In the mid-size IXP with more than 200 members, we find an upper bound volume of Out-of-cone traffic to be more than an order of magnitude less than the previous method inferred on the same data, revealing the practical importance of Customer Cone semantics in such analysis. We also found no significant improvement in deployment of SAV in networks using the mid-size IXP between 2017 and 2019. In hopes that our methods and tools generalize to use by other IXPs who want to avoid use of their infrastructure for launching spoofed-source DoS attacks, we explore the feasibility of scaling the system to larger and more diverse IXP infrastructures. To promote this goal, and broad replicability of our results, we make the source code of Spoofer-IX publicly available. This thesis illustrates the subtleties of scientific assessments of operational Internet infrastructure, and the need for a community focus on reproducing and repeating previous methods.A constatação de que uma rede encaminhará tráfego falsificado geralmente requer um ponto de vantagem ativo de medição nessa rede, impedindo efetivamente uma visão abrangente dessa vulnerabilidade global da Internet. Isto posto, argumentamos que uma visibilidade mais ampla do problema de spoofing pode estar na capacidade de inferir a falta de conformidade com as práticas de Source Address Validation (SAV) a partir de dados de tráfego da Internet altamente agregados, como o tráfego observável nos Internet Exchange Points (IXPs). A ideia chave é usar IXPs como observatórios para detectar pacotes falsificados, aproveitando o conhecimento da topologia de sistemas autônomos extraído dos dados do protocolo BGP para inferir quais endereços de origem devem aparecer legitimamente nas comunicações através da infra-estrutura de um IXP. Nesta tese, demonstramos que a literatura existente não captura diversos desafios fundamentais para essa abordagem, incluindo ruído em fontes de dados BGP, inferência heurística de relacionamento de sistemas autônomos e características específicas de interconectividade nas infraestruturas de IXPs. Propomos o Spoofer-IX, uma nova metodologia para superar esses desafios, utilizando a semântica do Customer Cone de relacionamento de sistemas autônomos para guiar com precisão a classificação de tráfego inter-domínio como In-cone, Out-of-cone ( spoofed ), Unverifiable, Bogon, e Unassigned. Aplicamos nossa metodologia em análises extensivas sobre dados reais de tráfego de dois IXPs distintos no Brasil, uma infraestrutura de médio porte e outra de grande porte. No IXP de tamanho médio, com mais de 200 membros, encontramos um limite superior do volume de tráfego Out-of-cone uma ordem de magnitude menor que o método anterior inferiu sob os mesmos dados, revelando a importância prática da semântica do Customer Cone em tal análise. Além disso, não encontramos melhorias significativas na implantação do Source Address Validation (SAV) em redes usando o IXP de tamanho médio entre 2017 e 2019. Na esperança de que nossos métodos e ferramentas sejam aplicáveis para uso por outros IXPs que desejam evitar o uso de sua infraestrutura para iniciar ataques de negação de serviço através de pacotes de origem falsificada, exploramos a viabilidade de escalar o sistema para infraestruturas IXP maiores e mais diversas. Para promover esse objetivo e a ampla replicabilidade de nossos resultados, disponibilizamos publicamente o código fonte do Spoofer-IX. Esta tese ilustra as sutilezas das avaliações científicas da infraestrutura operacional da Internet e a necessidade de um foco da comunidade na reprodução e repetição de métodos anteriores

    Implementation of Lessar Algorithm for Analysis of Network Intrusion Detection System in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are the result of multiple technological advances in electronics, nanotechnology, wireless communications, computing power, network development and robotics. Compose distributed systems devices usually composed of integrated, including at least CPU, radio, and sensors / actuators number. The wireless sensor networks (WSN) heterogeneous networks are formed by sensors, gateways and backend resources very limited physical. The sensors can measure parameters such as temperature, movement, lighting, humidity, etc..; the gateways establish the link with networks traditional and familiar. The back ends are responsible for the processing and display unit the captured data. Although several studies showed WSN middleware, has not been achieved with this industry acceptance due mainly to the different methodologies programming. The teams consist of WSN lowest consumption, costs and form factors. The reality is quite different environments applications are supported with equipment more powerful and fed by redundant power networks. The current article describes then implementation of lesser algorithm for analysis of network intrusion detection system in wireless sensor networks

    Validating User Flows to Protect Software Defined Network Environments

    Get PDF
    Software Defined Network is a promising network paradigm which has led to several security threats in SDN applications that involve user flows, switches, and controllers in the network. Threats as spoofing, tampering, information disclosure, Denial of Service, flow table overloading, and so on have been addressed by many researchers. In this paper, we present novel SDN design to solve three security threats: flow table overloading is solved by constructing a star topology-based architecture, unsupervised hashing method mitigates link spoofing attack, and fuzzy classifier combined with L1-ELM running on a neural network for isolating anomaly packets from normal packets. For effective flow migration Discrete-Time Finite-State Markov Chain model is applied. Extensive simulations using OMNeT++ demonstrate the performance of our proposed approach, which is better at preserving holding time than are other state-of-the-art works from the literature

    Security of the Internet of Things: Vulnerabilities, Attacks and Countermeasures

    Get PDF
    Wireless Sensor Networks (WSNs) constitute one of the most promising third-millennium technologies and have wide range of applications in our surrounding environment. The reason behind the vast adoption of WSNs in various applications is that they have tremendously appealing features, e.g., low production cost, low installation cost, unattended network operation, autonomous and longtime operation. WSNs have started to merge with the Internet of Things (IoT) through the introduction of Internet access capability in sensor nodes and sensing ability in Internet-connected devices. Thereby, the IoT is providing access to huge amount of data, collected by the WSNs, over the Internet. Hence, the security of IoT should start with foremost securing WSNs ahead of the other components. However, owing to the absence of a physical line-of-defense, i.e., there is no dedicated infrastructure such as gateways to watch and observe the flowing information in the network, security of WSNs along with IoT is of a big concern to the scientific community. More specifically, for the application areas in which CIA (confidentiality, integrity, availability) has prime importance, WSNs and emerging IoT technology might constitute an open avenue for the attackers. Besides, recent integration and collaboration of WSNs with IoT will open new challenges and problems in terms of security. Hence, this would be a nightmare for the individuals using these systems as well as the security administrators who are managing those networks. Therefore, a detailed review of security attacks towards WSNs and IoT, along with the techniques for prevention, detection, and mitigation of those attacks are provided in this paper. In this text, attacks are categorized and treated into mainly two parts, most or all types of attacks towards WSNs and IoT are investigated under that umbrella: “Passive Attacks” and “Active Attacks”. Understanding these attacks and their associated defense mechanisms will help paving a secure path towards the proliferation and public acceptance of IoT technology
    • …
    corecore