1,418 research outputs found

    Minimization of phonon-tunneling dissipation in mechanical resonators

    Get PDF
    Micro- and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavors. Their performance is in many cases limited by the deleterious effects of mechanical damping. Here, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the "phonon-tunneling" approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform the first rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunneling solver represents a major step towards accurate prediction of the mechanical quality factor.Comment: 12 pages, 4 figure

    Influence of diffraction on the spectrum and wavefunctions of an open system

    Full text link
    In this paper, we demonstrate the existence and significance of diffractive orbits in an open microwave billiard, both experimentally and theoretically. Orbits that diffract off of a sharp edge of the system are found to have a strong influence on the transmission spectrum of the system, especially in the regime where there are no stable classical orbits. On resonance, the wavefunctions are influenced by both classical and diffractive orbits. Off resonance, the wavefunctions are determined by the constructive interference of multiple transient, nonperiodic orbits. Experimental, numerical, and semiclassical results are presented.Comment: 27 pages, 29 figures, and 3 tables. Submitted to Physical Review E. A copy with higher resolution figures is available at http://monsoon.harvard.edu/~hersch/papers.htm

    First International Conference on Laboratory Research for Planetary Atmospheres

    Get PDF
    Proceedings of the First International Conference on Laboratory Research for Planetary Atmospheres are presented. The covered areas of research include: photon spectroscopy, chemical kinetics, thermodynamics, and charged particle interactions. This report contains the 12 invited papers, 27 contributed poster papers, and 5 plenary review papers presented at the conference. A list of attendees and a reprint of the Report of the Subgroup on Strategies for Planetary Atmospheres Exploration (SPASE) are provided in two appendices

    Quantitative modeling of superconducting planar resonators with improved field homogeneity for electron spin resonance

    Get PDF
    We present three designs for planar superconducting microwave resonators for electron spin resonance (ESR) experiments. We implement finite element simulations to calculate the resonance frequency and quality factors as well as the three-dimensional microwave magnetic field distribution of the resonators. One particular resonator design offers an increased homogeneity of the microwave magnetic field while the other two show a better confinement of the mode volume. We extend our model simulations to calculate the collective coupling rate between a spin ensemble and a microwave resonator in the presence of an inhomogeneous magnetic resonator field. Continuous-wave ESR experiments of phosphorus donors in nat^\mathrm{nat}Si demonstrate the feasibility of our resonators for magnetic resonance experiments. We extract the collective coupling rate and find a good agreement with our simulation results, corroborating our model approach. Finally, we discuss specific application cases for the different resonator designs

    Generation of a wave packet tailored to efficient free space excitation of a single atom

    Full text link
    We demonstrate the generation of an optical dipole wave suitable for the process of efficiently coupling single quanta of light and matter in free space. We employ a parabolic mirror for the conversion of a transverse beam mode to a focused dipole wave and show the required spatial and temporal shaping of the mode incident onto the mirror. The results include a proof of principle correction of the parabolic mirror's aberrations. For the application of exciting an atom with a single photon pulse we demonstrate the creation of a suitable temporal pulse envelope. We infer coupling strengths of 89% and success probabilities of up to 87% for the application of exciting a single atom for the current experimental parameters.Comment: to be published in Europ. Phys. J.
    • …
    corecore