751 research outputs found

    Audio-visual speech processing system for Polish applicable to human-computer interaction

    Get PDF
    This paper describes audio-visual speech recognition system for Polish language and a set of performance tests under various acoustic conditions. We first present the overall structure of AVASR systems with three main areas: audio features extraction, visual features extraction and subsequently, audiovisual speech integration. We present MFCC features for audio stream with standard HMM modeling technique, then we describe appearance and shape based visual features. Subsequently we present two feature integration techniques, feature concatenation and model fusion. We also discuss the results of a set of experiments conducted to select best system setup for Polish, under noisy audio conditions. Experiments are simulating human-computer interaction in computer control case with voice commands in difficult audio environments. With Active Appearance Model (AAM) and multistream Hidden Markov Model (HMM) we can improve system accuracy by reducing Word Error Rate for more than 30%, comparing to audio-only speech recognition, when Signal-to-Noise Ratio goes down to 0dB

    Automatic English phoneme recognition from articulatory data generated by EPG systems with grid and anatomical layout of contact sensors

    Get PDF
    The aim of the study was to conduct automatic phoneme identification from articulatory data that accompanied the production of these phonemes in continuous speech. The articulatory data were obtained from 2 electropalatographic systems, Palatometer by Complete Speech and Linguagraph by Rose-Medical. Palatometer was used with the artificial palate containing 124 contact sensors in a grid layout, including 2 sensors monitoring the lip contact. The palate included a vacuum-thermoformed flexible printed circuit. Linguagraph was used with the acrylic artificial palate designed and developed for the purpose of this study, containing 62 electrodes in anatomical layout. Palatometer was used by one native of General American and Linguagraph by one native of General British, each reading 140 phonetically balanced sentences that included Harvard Sentences and TIMIT prompts. The EPG data were parametrised into dimensionality reduction indexes, which were analysed by means of linear discriminant analysis and a probabilistic neural network. The results of classifications are discussed.National Science Centre (grant no. 2013/11/B/HS2/03151

    Multi-modal association learning using spike-timing dependent plasticity (STDP)

    Get PDF
    We propose an associative learning model that can integrate facial images with speech signals to target a subject in a reinforcement learning (RL) paradigm. Through this approach, the rules of learning will involve associating paired stimuli (stimulus–stimulus, i.e., face–speech), which is also known as predictor-choice pairs. Prior to a learning simulation, we extract the features of the biometrics used in the study. For facial features, we experiment by using two approaches: principal component analysis (PCA)-based Eigenfaces and singular value decomposition (SVD). For speech features, we use wavelet packet decomposition (WPD). The experiments show that the PCA-based Eigenfaces feature extraction approach produces better results than SVD. We implement the proposed learning model by using the Spike- Timing-Dependent Plasticity (STDP) algorithm, which depends on the time and rate of pre-post synaptic spikes. The key contribution of our study is the implementation of learning rules via STDP and firing rate in spatiotemporal neural networks based on the Izhikevich spiking model. In our learning, we implement learning for response group association by following the reward-modulated STDP in terms of RL, wherein the firing rate of the response groups determines the reward that will be given. We perform a number of experiments that use existing face samples from the Olivetti Research Laboratory (ORL) dataset, and speech samples from TIDigits. After several experiments and simulations are performed to recognize a subject, the results show that the proposed learning model can associate the predictor (face) with the choice (speech) at optimum performance rates of 77.26% and 82.66% for training and testing, respectively. We also perform learning by using real data, that is, an experiment is conducted on a sample of face–speech data, which have been collected in a manner similar to that of the initial data. The performance results are 79.11% and 77.33% for training and testing, respectively. Based on these results, the proposed learning model can produce high learning performance in terms of combining heterogeneous data (face–speech). This finding opens possibilities to expand RL in the field of biometric authenticatio

    Viseme-based Lip-Reading using Deep Learning

    Get PDF
    Research in Automated Lip Reading is an incredibly rich discipline with so many facets that have been the subject of investigation including audio-visual data, feature extraction, classification networks and classification schemas. The most advanced and up-to-date lip-reading systems can predict entire sentences with thousands of different words and the majority of them use ASCII characters as the classification schema. The classification performance of such systems however has been insufficient and the need to cover an ever expanding range of vocabulary using as few classes as possible is challenge. The work in this thesis contributes to the area concerning classification schemas by proposing an automated lip reading model that predicts sentences using visemes as a classification schema. This is an alternative schema to using ASCII characters, which is the conventional class system used to predict sentences. This thesis provides a review of the current trends in deep learning- based automated lip reading and analyses a gap in the research endeavours of automated lip-reading by contributing towards work done in the region of classification schema. A whole new line of research is opened up whereby an alternative way to do lip-reading is explored and in doing so, lip-reading performance results for predicting s entences from a benchmark dataset are attained which improve upon the current state-of-the-art. In this thesis, a neural network-based lip reading system is proposed. The system is lexicon-free and uses purely visual cues. With only a limited number of visemes as classes to recognise, the system is designed to lip read sentences covering a wide range of vocabulary and to recognise words that may not be included in system training. The lip-reading system predicts sentences as a two-stage procedure with visemes being recognised as the first stage and words being classified as the second stage. This is such that the second-stage has to both overcome the one-to-many mapping problem posed in lip-reading where one set of visemes can map to several words, and the problem of visemes being confused or misclassified to begin with. To develop the proposed lip-reading system, a number of tasks have been performed in this thesis. These include the classification of continuous sequences of visemes; and the proposal of viseme-to-word conversion models that are both effective in their conversion performance of predicting words, and robust to the possibility of viseme confusion or misclassification. The initial system reported has been testified on the challenging BBC Lip Reading Sentences 2 (LRS2) benchmark dataset attaining a word accuracy rate of 64.6%. Compared with the state-of-the-art works in lip reading sentences reported at the time, the system had achieved a significantly improved performance. The lip reading system is further improved upon by using a language model that has been demonstrated to be effective at discriminating between homopheme words and being robust to incorrectly classified visemes. An improved performance in predicting spoken sentences from the LRS2 dataset is yielded with an attained word accuracy rate of 79.6% which is still better than another lip-reading system trained and evaluated on the the same dataset that attained a word accuracy rate 77.4% and it is to the best of our knowledge the next best observed result attained on LRS2

    PHONOTACTIC AND ACOUSTIC LANGUAGE RECOGNITION

    Get PDF
    Práce pojednává o fonotaktickém a akustickém přístupu pro automatické rozpoznávání jazyka. První část práce pojednává o fonotaktickém přístupu založeném na výskytu fonémových sekvenci v řeči. Nejdříve je prezentován popis vývoje fonémového rozpoznávače jako techniky pro přepis řeči do sekvence smysluplných symbolů. Hlavní důraz je kladen na dobré natrénování fonémového rozpoznávače a kombinaci výsledků z několika fonémových rozpoznávačů trénovaných na různých jazycích (Paralelní fonémové rozpoznávání následované jazykovými modely (PPRLM)). Práce také pojednává o nové technice anti-modely v PPRLM a studuje použití fonémových grafů místo nejlepšího přepisu. Na závěr práce jsou porovnány dva přístupy modelování výstupu fonémového rozpoznávače -- standardní n-gramové jazykové modely a binární rozhodovací stromy. Hlavní přínos v akustickém přístupu je diskriminativní modelování cílových modelů jazyků a první experimenty s kombinací diskriminativního trénování a na příznacích, kde byl odstraněn vliv kanálu. Práce dále zkoumá různé druhy technik fúzi akustického a fonotaktického přístupu. Všechny experimenty jsou provedeny na standardních datech z NIST evaluaci konané v letech 2003, 2005 a 2007, takže jsou přímo porovnatelné s výsledky ostatních skupin zabývajících se automatickým rozpoznáváním jazyka. S fúzí uvedených technik jsme posunuli state-of-the-art výsledky a dosáhli vynikajících výsledků ve dvou NIST evaluacích.This thesis deals with phonotactic and acoustic techniques for automatic language recognition (LRE). The first part of the thesis deals with the phonotactic language recognition based on co-occurrences of phone sequences in speech. A thorough study of phone recognition as tokenization technique for LRE is done, with focus on the amounts of training data for phone recognizer and on the combination of phone recognizers trained on several language (Parallel Phone Recognition followed by Language Model - PPRLM). The thesis also deals with novel technique of anti-models in PPRLM and investigates into using phone lattices instead of strings. The work on phonotactic approach is concluded by a comparison of classical n-gram modeling techniques and binary decision trees. The acoustic LRE was addressed too, with the main focus on discriminative techniques for training target language acoustic models and on initial (but successful) experiments with removing channel dependencies. We have also investigated into the fusion of phonotactic and acoustic approaches. All experiments were performed on standard data from NIST 2003, 2005 and 2007 evaluations so that the results are directly comparable to other laboratories in the LRE community. With the above mentioned techniques, the fused systems defined the state-of-the-art in the LRE field and reached excellent results in NIST evaluations.

    Multimodaalsel emotsioonide tuvastamisel põhineva inimese-roboti suhtluse arendamine

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneÜks afektiivse arvutiteaduse peamistest huviobjektidest on mitmemodaalne emotsioonituvastus, mis leiab rakendust peamiselt inimese-arvuti interaktsioonis. Emotsiooni äratundmiseks uuritakse nendes süsteemides nii inimese näoilmeid kui kakõnet. Käesolevas töös uuritakse inimese emotsioonide ja nende avaldumise visuaalseid ja akustilisi tunnuseid, et töötada välja automaatne multimodaalne emotsioonituvastussüsteem. Kõnest arvutatakse mel-sageduse kepstri kordajad, helisignaali erinevate komponentide energiad ja prosoodilised näitajad. Näoilmeteanalüüsimiseks kasutatakse kahte erinevat strateegiat. Esiteks arvutatakse inimesenäo tähtsamate punktide vahelised erinevad geomeetrilised suhted. Teiseks võetakse emotsionaalse sisuga video kokku vähendatud hulgaks põhikaadriteks, misantakse sisendiks konvolutsioonilisele tehisnärvivõrgule emotsioonide visuaalsekseristamiseks. Kolme klassifitseerija väljunditest (1 akustiline, 2 visuaalset) koostatakse uus kogum tunnuseid, mida kasutatakse õppimiseks süsteemi viimasesetapis. Loodud süsteemi katsetati SAVEE, Poola ja Serbia emotsionaalse kõneandmebaaside, eNTERFACE’05 ja RML andmebaaside peal. Saadud tulemusednäitavad, et võrreldes olemasolevatega võimaldab käesoleva töö raames loodudsüsteem suuremat täpsust emotsioonide äratundmisel. Lisaks anname käesolevastöös ülevaate kirjanduses väljapakutud süsteemidest, millel on võimekus tunda äraemotsiooniga seotud ̆zeste. Selle ülevaate eesmärgiks on hõlbustada uute uurimissuundade leidmist, mis aitaksid lisada töö raames loodud süsteemile ̆zestipõhiseemotsioonituvastuse võimekuse, et veelgi enam tõsta süsteemi emotsioonide äratundmise täpsust.Automatic multimodal emotion recognition is a fundamental subject of interest in affective computing. Its main applications are in human-computer interaction. The systems developed for the foregoing purpose consider combinations of different modalities, based on vocal and visual cues. This thesis takes the foregoing modalities into account, in order to develop an automatic multimodal emotion recognition system. More specifically, it takes advantage of the information extracted from speech and face signals. From speech signals, Mel-frequency cepstral coefficients, filter-bank energies and prosodic features are extracted. Moreover, two different strategies are considered for analyzing the facial data. First, facial landmarks' geometric relations, i.e. distances and angles, are computed. Second, we summarize each emotional video into a reduced set of key-frames. Then they are taught to visually discriminate between the emotions. In order to do so, a convolutional neural network is applied to the key-frames summarizing the videos. Afterward, the output confidence values of all the classifiers from both of the modalities are used to define a new feature space. Lastly, the latter values are learned for the final emotion label prediction, in a late fusion. The experiments are conducted on the SAVEE, Polish, Serbian, eNTERFACE'05 and RML datasets. The results show significant performance improvements by the proposed system in comparison to the existing alternatives, defining the current state-of-the-art on all the datasets. Additionally, we provide a review of emotional body gesture recognition systems proposed in the literature. The aim of the foregoing part is to help figure out possible future research directions for enhancing the performance of the proposed system. More clearly, we imply that incorporating data representing gestures, which constitute another major component of the visual modality, can result in a more efficient framework

    Acoustic Word Embeddings for Zero-Resource Languages Using Self-Supervised Contrastive Learning and Multilingual Adaptation

    Get PDF
    Acoustic word embeddings (AWEs) are fixed-dimensional representations of variable-length speech segments. For zero-resource languages where labelled data is not available, one AWE approach is to use unsupervised autoencoder-based recurrent models. Another recent approach is to use multilingual transfer: a supervised AWE model is trained on several well-resourced languages and then applied to an unseen zero-resource language. We consider how a recent contrastive learning loss can be used in both the purely unsupervised and multilingual transfer settings. Firstly, we show that terms from an unsupervised term discovery system can be used for contrastive self-supervision, resulting in improvements over previous unsupervised monolingual AWE models. Secondly, we consider how multilingual AWE models can be adapted to a specific zero-resource language using discovered terms. We find that self-supervised contrastive adaptation outperforms adapted multilingual correspondence autoencoder and Siamese AWE models, giving the best overall results in a word discrimination task on six zero-resource languages.Comment: Accepted to SLT 202

    Deep learning for speech to text transcription for the portuguese language

    Get PDF
    Automatic speech recognition (ASR) is the process of transcribing audio recordings into text, i.e. to transform speech into the respective sequence of words. This process is also commonly known as speechto- text. Machine learning (ML), the ability of machines to learn from examples, is one of the most relevant areas of artificial intelligence in today’s world. Deep learning is a subset of ML which makes use of Deep Neural Networks, a particular type of Artificial Neural Networks (ANNs), which are intended to mimic human neurons, that possess a large number of layers. This dissertation reviews the state-of-the-art on automatic speech recognition throughout time, from early systems which used Hidden Markov Models (HMMs) and Gaussian Mixture Models (GMMs) to the most up-to-date end-to-end (E2E) deep neural models. Considering the context of the present work, some deep learning algorithms used in state-of-the-art approaches are explained in additional detail. The current work aims to develop an ASR system for the European Portuguese language using deep learning. This is achieved by implementing a pipeline composed of stages responsible for data acquisition, data analysis, data pre-processing, model creation and evaluation of results. With the NVIDIA NeMo framework was possible to implement the QuartzNet15x5 architecture based on 1D time-channel separable convolutions. Following a data-centric methodology, the model developed yielded state-of-the-art Word Error Rate (WER) results of WER = 0.0503; Sumário: Aprendizagem profunda para transcrição de fala para texto para a Língua Portuguesa - O reconhecimento automático de fala (ASR) é o processo de transcrever gravações de áudio em texto, i.e., transformar a fala na respectiva sequência de palavras. Esse processo também é comumente conhecido como speech-to-text. A aprendizagem de máquina (ML), a capacidade das máquinas de aprenderem através de exemplos, é um dos campos mais relevantes da inteligência artificial no mundo atual. Deep learning é um subconjunto de ML que faz uso de Redes Neurais Profundas, um tipo particular de Redes Neurais Artificiais (ANNs), que se destinam a imitar neurónios humanos, que possuem um grande número de camadas Esta dissertação faz uma revisão ao estado da arte do reconhecimento automático de fala ao longo do tempo, desde os primeiros sistemas que usavam Hidden Markov Models (HMMs) e Gaussian Mixture Models (GMMs até sistemas end-to-end (E2E) mais recentes que usam modelos neuronais profundos. Considerando o contexto do presente trabalho, alguns algoritmos de aprendizagem profunda usados em abordagens de ponta são explicados mais detalhadamente. O presente trabalho tem como objetivo desenvolver um sistema ASR para a língua portuguesa europeia utilizando deep learning. Isso é conseguido por meio da implementação de um pipeline composto por etapas responsáveis pela aquisição de dados, análise dos dados, pré-processamento dos dados, criação do modelo e avaliação dos resultados. Com o framework NVIDIA NeMo foi possível implementar a arquitetura QuartzNet15x5 baseada em convoluções 1D separáveis por canal de tempo. Seguindo uma metodologia centrada em dados, o modelo desenvolvido produziu resultados de taxa de erro de palavra (WER) semelhantes aos de estado da arte de WER = 0.0503
    corecore