5,600 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Spectral-spatial classification of hyperspectral images: three tricks and a new supervised learning setting

    Get PDF
    Spectral-spatial classification of hyperspectral images has been the subject of many studies in recent years. In the presence of only very few labeled pixels, this task becomes challenging. In this paper we address the following two research questions: 1) Can a simple neural network with just a single hidden layer achieve state of the art performance in the presence of few labeled pixels? 2) How is the performance of hyperspectral image classification methods affected when using disjoint train and test sets? We give a positive answer to the first question by using three tricks within a very basic shallow Convolutional Neural Network (CNN) architecture: a tailored loss function, and smooth- and label-based data augmentation. The tailored loss function enforces that neighborhood wavelengths have similar contributions to the features generated during training. A new label-based technique here proposed favors selection of pixels in smaller classes, which is beneficial in the presence of very few labeled pixels and skewed class distributions. To address the second question, we introduce a new sampling procedure to generate disjoint train and test set. Then the train set is used to obtain the CNN model, which is then applied to pixels in the test set to estimate their labels. We assess the efficacy of the simple neural network method on five publicly available hyperspectral images. On these images our method significantly outperforms considered baselines. Notably, with just 1% of labeled pixels per class, on these datasets our method achieves an accuracy that goes from 86.42% (challenging dataset) to 99.52% (easy dataset). Furthermore we show that the simple neural network method improves over other baselines in the new challenging supervised setting. Our analysis substantiates the highly beneficial effect of using the entire image (so train and test data) for constructing a model.Comment: Remote Sensing 201

    Spectral mixture analysis of EELS spectrum-images

    Get PDF
    Recent advances in detectors and computer science have enabled the acquisition and the processing of multidimensional datasets, in particular in the field of spectral imaging. Benefiting from these new developments, earth scientists try to recover the reflectance spectra of macroscopic materials (e.g., water, grass, mineral types...) present in an observed scene and to estimate their respective proportions in each mixed pixel of the acquired image. This task is usually referred to as spectral mixture analysis or spectral unmixing (SU). SU aims at decomposing the measured pixel spectrum into a collection of constituent spectra, called endmembers, and a set of corresponding fractions (abundances) that indicate the proportion of each endmember present in the pixel. Similarly, when processing spectrum-images, microscopists usually try to map elemental, physical and chemical state information of a given material. This paper reports how a SU algorithm dedicated to remote sensing hyperspectral images can be successfully applied to analyze spectrum-image resulting from electron energy-loss spectroscopy (EELS). SU generally overcomes standard limitations inherent to other multivariate statistical analysis methods, such as principal component analysis (PCA) or independent component analysis (ICA), that have been previously used to analyze EELS maps. Indeed, ICA and PCA may perform poorly for linear spectral mixture analysis due to the strong dependence between the abundances of the different materials. One example is presented here to demonstrate the potential of this technique for EELS analysis.Comment: Manuscript accepted for publication in Ultramicroscop

    Towards intelligent geo-database support for earth system observation: Improving the preparation and analysis of big spatio-temporal raster data

    Get PDF
    The European COPERNICUS program provides an unprecedented breakthrough in the broad use and application of satellite remote sensing data. Maintained on a sustainable basis, the COPERNICUS system is operated on a free-and-open data policy. Its guaranteed availability in the long term attracts a broader community to remote sensing applications. In general, the increasing amount of satellite remote sensing data opens the door to the diverse and advanced analysis of this data for earth system science. However, the preparation of the data for dedicated processing is still inefficient as it requires time-consuming operator interaction based on advanced technical skills. Thus, the involved scientists have to spend significant parts of the available project budget rather on data preparation than on science. In addition, the analysis of the rich content of the remote sensing data requires new concepts for better extraction of promising structures and signals as an effective basis for further analysis. In this paper we propose approaches to improve the preparation of satellite remote sensing data by a geo-database. Thus the time needed and the errors possibly introduced by human interaction are minimized. In addition, it is recommended to improve data quality and the analysis of the data by incorporating Artificial Intelligence methods. A use case for data preparation and analysis is presented for earth surface deformation analysis in the Upper Rhine Valley, Germany, based on Persistent Scatterer Interferometric Synthetic Aperture Radar data. Finally, we give an outlook on our future research
    • …
    corecore