378 research outputs found

    Appearance-based image splitting for HDR display systems

    Get PDF
    High dynamic range displays that incorporate two optically-coupled image planes have recently been developed. This dual image plane design requires that a given HDR input image be split into two complementary standard dynamic range components that drive the coupled systems, therefore there existing image splitting issue. In this research, two types of HDR display systems (hardcopy and softcopy HDR display) are constructed to facilitate the study of HDR image splitting algorithm for building HDR displays. A new HDR image splitting algorithm which incorporates iCAM06 image appearance model is proposed, seeking to create displayed HDR images that can provide better image quality. The new algorithm has potential to improve image details perception, colorfulness and better gamut utilization. Finally, the performance of the new iCAM06-based HDR image splitting algorithm is evaluated and compared with widely spread luminance square root algorithm through psychophysical studies

    Perception and Mitigation of Artifacts in a Flat Panel Tiled Display System

    Get PDF
    Flat panel displays continue to dominate the display market. Larger, higher resolution flat panel displays are now in demand for scientific, business, and entertainment purposes. Manufacturing such large displays is currently difficult and expensive. Alternately, larger displays can be constructed by tiling smaller flat panel displays. While this approach may prove to be more cost effective, appropriate measures must be taken to achieve visual seamlessness and uniformity. In this project we conducted a set of experiments to study the perception and mitigation of image artifacts in tiled display systems. In the first experiment we used a prototype tiled display to investigate its current viability and to understand what critical perceptible visual artifacts exist in this system. Based on word frequencies of the survey responses, the most disruptive artifacts perceived were ranked. On the basis of these findings, we conducted a second experiment to test the effectiveness of image processing algorithms designed to mitigate some of the most distracting artifacts without changing the physical properties of the display system. Still images were processed using several algorithms and evaluated by observers using magnitude scaling. Participants in the experiment noticed statistically significant improvement in image quality from one of the two algorithms. Similar testing should be conducted to evaluate the effectiveness of the algorithms on video content. While much work still needs to be done, the contributions of this project should enable the development of an image processing pipeline to mitigate perceived artifacts in flat panel display systems and provide the groundwork for extending such a pipeline to realtime applications

    Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display

    Get PDF
    Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE’s 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of color-normal observers

    High Dynamic Range (HDR) Display Perception

    Get PDF
    Displays have undergone a huge development in the last several decades. From cathode-ray tube (CRT), liquid crystal display (LCD), to organic light-emitting diode (OLED), even Q-OLED, the new configurations of the display bring more and more functions into industry and daily life. In the recent several years, high dynamic range (HDR) displays become popular. HDR displays usually refer to that the black level of the display is darker and the peak being brighter compared with the standard dynamic range (SDR) display. Traditionally, the peak luminance level can be used as the white in characterization and calibration. However, for HDR displays, the peak luminance is higher than the traditional diffuse white level. Exploration of the perceptual diffuse white in HDR image when presented in displays is proposed, which can be beneficial to the characterizing and the optimizing the usage of the HDR display. Moreover, in addition to the ``diffuse white , 3D color gamut volume can be calculated in some specific color appearance models. Calculation and modeling of the 3D color gamut volume can be very useful for display design and better characterizing display color reproduction capability. Furthermore, the perceptional color gamut volume can be measured through psychophysical experiments. Comparison between the perceptional color gamut volume and the theoretical 3D gamut volume calculations will reveal some insights for optimizing the usage of HDR displays. Another advantage of the HDR display is its darker black compared with the SDR display. Compared with the real black object, what level of black is `perfect\u27 enough in displays? Experiments were proposed and conducted to evaluate that if the HDR display is capable of showing ``perfect black for different types of background images/patterns. A glare-based model was proposed to predict the visual ``perfect black. Additionally, the dynamic range of human vision system is very large. However, the simultaneous dynamic range of human vision system is much smaller and is important for the fine tuning usage of HDR displays. The simultaneous dynamic range was measured directly for different stimulus sizes. Also, it was found that the simultaneous dynamic range was peak luminance level dependent. A mathematical model was proposed based on the experimental data to predict the simultaneous dynamic range. Also the spatial frequency effect of the target pattern on the simultaneous dynamic range was measured and modeled. The four different assessments about HDR displays perception would provide experimental data and models for a better understanding of HDR perception and tuning of the HDR display

    High-dynamic-range displays : contributions to signal processing and backlight control

    Get PDF

    Camera based Display Image Quality Assessment

    Get PDF
    This thesis presents the outcomes of research carried out by the PhD candidate Ping Zhao during 2012 to 2015 in Gjøvik University College. The underlying research was a part of the HyPerCept project, in the program of Strategic Projects for University Colleges, which was funded by The Research Council of Norway. The research was engaged under the supervision of Professor Jon Yngve Hardeberg and co-supervision of Associate Professor Marius Pedersen, from The Norwegian Colour and Visual Computing Laboratory, in the Faculty of Computer Science and Media Technology of Gjøvik University College; as well as the co-supervision of Associate Professor Jean-Baptiste Thomas, from The Laboratoire Electronique, Informatique et Image, in the Faculty of Computer Science of Universit´e de Bourgogne. The main goal of this research was to develop a fast and an inexpensive camera based display image quality assessment framework. Due to the limited time frame, we decided to focus only on projection displays with static images displayed on them. However, the proposed methods were not limited to projection displays, and they were expected to work with other types of displays, such as desktop monitors, laptop screens, smart phone screens, etc., with limited modifications. The primary contributions from this research can be summarized as follows: 1. We proposed a camera based display image quality assessment framework, which was originally designed for projection displays but it can be used for other types of displays with limited modifications. 2. We proposed a method to calibrate the camera in order to eliminate unwanted vignetting artifact, which is mainly introduced by the camera lens. 3. We proposed a method to optimize the camera’s exposure with respect to the measured luminance of incident light, so that after the calibration all camera sensors share a common linear response region. 4. We proposed a marker-less and view-independent method to register one captured image with its original at a sub-pixel level, so that we can incorporate existing full reference image quality metrics without modifying them. 5. We identified spatial uniformity, contrast and sharpness as the most important image quality attributes for projection displays, and we used the proposed framework to evaluate the prediction performance of the state-of-the-art image quality metrics regarding these attributes. The proposed image quality assessment framework is the core contribution of this research. Comparing to conventional image quality assessment approaches, which were largely based on the measurements of colorimeter or spectroradiometer, using camera as the acquisition device has the advantages of quickly recording all displayed pixels in one shot, relatively inexpensive to purchase the instrument. Therefore, the consumption of time and resources for image quality assessment can be largely reduced. We proposed a method to calibrate the camera in order to eliminate unwanted vignetting artifact primarily introduced by the camera lens. We used a hazy sky as a closely uniform light source, and the vignetting mask was generated with respect to the median sensor responses over i only a few rotated shots of the same spot on the sky. We also proposed a method to quickly determine whether all camera sensors were sharing a common linear response region. In order to incorporate existing full reference image quality metrics without modifying them, an accurate registration of pairs of pixels between one captured image and its original is required. We proposed a marker-less and view-independent image registration method to solve this problem. The experimental results proved that the proposed method worked well in the viewing conditions with a low ambient light. We further identified spatial uniformity, contrast and sharpness as the most important image quality attributes for projection displays. Subsequently, we used the developed framework to objectively evaluate the prediction performance of the state-of-art image quality metrics regarding these attributes in a robust manner. In this process, the metrics were benchmarked with respect to the correlations between the prediction results and the perceptual ratings collected from subjective experiments. The analysis of the experimental results indicated that our proposed methods were effective and efficient. Subjective experiment is an essential component for image quality assessment; however it can be time and resource consuming, especially in the cases that additional image distortion levels are required to extend the existing subjective experimental results. For this reason, we investigated the possibility of extending subjective experiments with baseline adjustment method, and we found that the method could work well if appropriate strategies were applied. The underlying strategies referred to the best distortion levels to be included in the baseline, as well as the number of them

    Discomfort glare and time of day

    Get PDF
    There are strong reasons to suspect that glare sensation varies with time of the day. This study was designed to test whether such a relationship exists. Thirty subjects were exposed to an artificial lighting source at four times of the day. The source luminance was progressively increased and subjects were required to give Glare Sensation Votes (GSVs) corresponding to the level of visual discomfort experienced. Glare indices were calculated for every reported GSV, and results were statistically analysed. The findings indicated a tendency towards greater tolerance to luminance increases in artificial lighting as the day progresses. This trend was found not to be statistically related to the possible confounding variable of learning, providing evidence of an effect of time of the day on glare sensation

    Social interaction in local public squares after dark

    Get PDF
    This paper explores social interaction in local public squares under different lighting conditions. At its best public squares are social spaces that engender a sense of belonging, increase the quality of life and wellbeing of individuals. It is proposed that outdoor lighting would be essential to the use of the public realm after dark, but empirical results regarding lighting conditions and social aspects of life in public squares are limited. Based on a socio-physical conceptual model of the transactional relationship of the user, the lit environment andthe behavioural outcome, this study investigated active social interaction in daylight compared to after dark. A field study was conducted in two local public squares in Malmö, Sweden. The occurrences of which visitors were being alone, in pairs, or in groups of three or more (N=2522), and verbal or non-verbal interaction amongst those in company of another person were recorded.The lit appearance of the two squares after dark, was assessed with HDR-photography and photometric measurements; portraying dissimilar spatial, spectral and intensity characteristics.The results of social interaction show dissimilar patterns of the two squares; an increase in social interaction in EL after dark was observed in one of the squares, while a decrease in the afternoon and no significant difference was displayed in the evening after dark in the other square. It is suggested that lighting may sustain patterns of social interaction after dark, however it might be, that the company of another is especially important after dark
    • …
    corecore