19,225 research outputs found

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    ERP implementation methodologies and frameworks: a literature review

    Get PDF
    Enterprise Resource Planning (ERP) implementation is a complex and vibrant process, one that involves a combination of technological and organizational interactions. Often an ERP implementation project is the single largest IT project that an organization has ever launched and requires a mutual fit of system and organization. Also the concept of an ERP implementation supporting business processes across many different departments is not a generic, rigid and uniform concept and depends on variety of factors. As a result, the issues addressing the ERP implementation process have been one of the major concerns in industry. Therefore ERP implementation receives attention from practitioners and scholars and both, business as well as academic literature is abundant and not always very conclusive or coherent. However, research on ERP systems so far has been mainly focused on diffusion, use and impact issues. Less attention has been given to the methods used during the configuration and the implementation of ERP systems, even though they are commonly used in practice, they still remain largely unexplored and undocumented in Information Systems research. So, the academic relevance of this research is the contribution to the existing body of scientific knowledge. An annotated brief literature review is done in order to evaluate the current state of the existing academic literature. The purpose is to present a systematic overview of relevant ERP implementation methodologies and frameworks as a desire for achieving a better taxonomy of ERP implementation methodologies. This paper is useful to researchers who are interested in ERP implementation methodologies and frameworks. Results will serve as an input for a classification of the existing ERP implementation methodologies and frameworks. Also, this paper aims also at the professional ERP community involved in the process of ERP implementation by promoting a better understanding of ERP implementation methodologies and frameworks, its variety and history

    Identifying and addressing adaptability and information system requirements for tactical management

    Get PDF

    A Smart Products Lifecycle Management (sPLM) Framework - Modeling for Conceptualization, Interoperability, and Modularity

    Get PDF
    Autonomy and intelligence have been built into many of today’s mechatronic products, taking advantage of low-cost sensors and advanced data analytics technologies. Design of product intelligence (enabled by analytics capabilities) is no longer a trivial or additional option for the product development. The objective of this research is aimed at addressing the challenges raised by the new data-driven design paradigm for smart products development, in which the product itself and the smartness require to be carefully co-constructed. A smart product can be seen as specific compositions and configurations of its physical components to form the body, its analytics models to implement the intelligence, evolving along its lifecycle stages. Based on this view, the contribution of this research is to expand the “Product Lifecycle Management (PLM)” concept traditionally for physical products to data-based products. As a result, a Smart Products Lifecycle Management (sPLM) framework is conceptualized based on a high-dimensional Smart Product Hypercube (sPH) representation and decomposition. First, the sPLM addresses the interoperability issues by developing a Smart Component data model to uniformly represent and compose physical component models created by engineers and analytics models created by data scientists. Second, the sPLM implements an NPD3 process model that incorporates formal data analytics process into the new product development (NPD) process model, in order to support the transdisciplinary information flows and team interactions between engineers and data scientists. Third, the sPLM addresses the issues related to product definition, modular design, product configuration, and lifecycle management of analytics models, by adapting the theoretical frameworks and methods for traditional product design and development. An sPLM proof-of-concept platform had been implemented for validation of the concepts and methodologies developed throughout the research work. The sPLM platform provides a shared data repository to manage the product-, process-, and configuration-related knowledge for smart products development. It also provides a collaborative environment to facilitate transdisciplinary collaboration between product engineers and data scientists

    Multi-product cost and value stream modelling in support of business process analysis

    Get PDF
    To remain competitive, most Manufacturing Enterprises (MEs) need cost effective and responsive business processes with capability to realise multiple value streams specified by changes in customer needs. To achieve this, there is the need to provide reusable computational representations of organisational structures, processes, information, resources and related cost and value flows especially in enterprises realizing multiple products. Current best process mapping techniques do not suitably capture attributes of MEs and their systems and thus dynamics associated with multi-product flows which impact on cost and value generation cannot be effectively modelled and used as basis for decision making. Therefore, this study has developed an integrated multiproduct dynamic cost and value stream modelling technique with the embedded capability of capturing aspects of dynamics associated with multiple product realization in MEs. The integrated multiproduct dynamic cost and value stream modelling technique rests on well experimented technologies in the domains of process mapping, enterprise modelling, system dynamics and discrete event simulation modelling. The applicability of the modelling technique was tested in four case study scenarios. The results generated out of the application of the modelling technique in solving key problems in case study companies, showed that the derived technique offers better solutions in designing, analysing, estimating cost and values and improving processes required for the realization of multiple products in MEs, when compared with current lean based value stream mapping techniques. Also the developed technique provides new modelling constructs which best describe process entities, variables and business indicators in support of enterprise systems design and business process (re) engineering. In addition to these benefits, an enriched approach for translating qualitative causal loop models into quantitative simulation models for parametric analysis of the impact of dynamic entities on processes has been introduced. Further work related to this research will include the extension of the technique to capture relevant strategic and tactical processes for in-depth analysis and improvements. Also further research related to the application of the dynamic producer unit concept in the design of MEs will be required
    corecore