1,245 research outputs found

    Scene-based imperceptible-visible watermarking for HDR video content

    Get PDF
    This paper presents the High Dynamic Range - Imperceptible Visible Watermarking for HDR video content (HDR-IVW-V) based on scene detection for robust copyright protection of HDR videos using a visually imperceptible watermarking methodology. HDR-IVW-V employs scene detection to reduce both computational complexity and undesired visual attention to watermarked regions. Visual imperceptibility is achieved by finding the region of a frame with the highest hiding capacities on which the Human Visual System (HVS) cannot recognize the embedded watermark. The embedded watermark remains visually imperceptible as long as the normal color calibration parameters are held. HDR-IVW-V is evaluated on PQ-encoded HDR video content successfully attaining visual imperceptibility, robustness to tone mapping operations and image quality preservation

    Evaluation of the color image and video processing chain and visual quality management for consumer systems

    Get PDF
    With the advent of novel digital display technologies, color processing is increasingly becoming a key aspect in consumer video applications. Today’s state-of-the-art displays require sophisticated color and image reproduction techniques in order to achieve larger screen size, higher luminance and higher resolution than ever before. However, from color science perspective, there are clearly opportunities for improvement in the color reproduction capabilities of various emerging and conventional display technologies. This research seeks to identify potential areas for improvement in color processing in a video processing chain. As part of this research, various processes involved in a typical video processing chain in consumer video applications were reviewed. Several published color and contrast enhancement algorithms were evaluated, and a novel algorithm was developed to enhance color and contrast in images and videos in an effective and coordinated manner. Further, a psychophysical technique was developed and implemented for performing visual evaluation of color image and consumer video quality. Based on the performance analysis and visual experiments involving various algorithms, guidelines were proposed for the development of an effective color and contrast enhancement method for images and video applications. It is hoped that the knowledge gained from this research will help build a better understanding of color processing and color quality management methods in consumer video

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    High dynamic range video compression exploiting luminance masking

    Get PDF

    Effect of Color Space on High Dynamic Range Video Compression Performance

    Get PDF
    High dynamic range (HDR) technology allows for capturing and delivering a greater range of luminance levels compared to traditional video using standard dynamic range (SDR). At the same time, it has brought multiple challenges in content distribution, one of them being video compression. While there has been a significant amount of work conducted on this topic, there are some aspects that could still benefit this area. One such aspect is the choice of color space used for coding. In this paper, we evaluate through a subjective study how the performance of HDR video compression is affected by three color spaces: the commonly used Y'CbCr, and the recently introduced ITP (ICtCp) and Ypu'v'. Five video sequences are compressed at four bit rates, selected in a preliminary study, and their quality is assessed using pairwise comparisons. The results of pairwise comparisons are further analyzed and scaled to obtain quality scores. We found no evidence of ITP improving compression performance over Y'CbCr. We also found that Ypu'v' results in a moderately lower performance for some sequences
    corecore