5,710 research outputs found

    A Quantum Non-demolition measurement of Fock states of mesoscopic mechanical oscillators

    Get PDF
    We investigate a scheme that makes a quantum non-demolition measurement of the excitation level of a mesoscopic mechanical oscillator by utilizing the anharmonic coupling between two elastic beam bending modes. The non-linear coupling between the two modes shifts the resonant frequency of the readout oscillator proportionate to the excitation of the system oscillator. This frequency shift may be detected as a phase shift of the readout oscillation when driven on resonance. We show that in an appropriate regime this measurement approaches a quantum non-demolition measurement of the phonon number of the system oscillator. As phonon energies in micromechanical oscillators become comparable to or greater than the thermal energy, the individual phonon dynamics within each mode can be resolved. As a result it should be possible to monitor jumps between Fock states caused by the coupling of the system to the thermal reservoirs.Comment: revised, 21 pages, 9 figure

    Adaptive Parameter Estimation of Power System Dynamic Models Using Modal Information

    Get PDF
    Knowledge of the parameter values of the dynamic generator models is of paramount importance for creating accurate models for power system dynamics studies. Traditionally, power systems consists of a relatively limited numbers of large power stations and the values of generator parameters were provided by manufacturers and validated by utilities. Recently however, with the increasing penetration of distributed generation, the accuracy of these models and parameters cannot be guaranteed. This thesis addresses the above concerns by developing a methodology to estimate the parameter values of a power system dynamic model online, employing dynamic system modes, i.e. modal frequencies and damping. The dynamic modes are extracted from real-time measurements. The aim of the proposed methodology is to minimise the differences between the observed and modelled modes of oscillation. It should be emphasised that the proposed methodology does not aim to develop the dynamic model itself but rather modify its parameter using WAMS measurements. The developed methodology is general and can be used to identify any generator parameters., However, thesis concentrates on the estimation of generator inertia constants. The results suggest that the proposed methodology can estimate inertias and replicate the dynamic behaviour of the power system accurately, through the inclusion of pseudo-measurements in the optimisation process. The pseudo-measurements not only improves the accuracy of the parameter estimation but also the robustness of it. Observability, a problem when there are fewer numbers of measurements than the numbers of parameters to be estimated, has also been successfully tackled. It has been shown that the damping measurements do not influence the accuracy and robustness of generator inertia estimation significantly

    Power System Frequency Measurement Based Data Analytics and Situational Awareness

    Get PDF
    This dissertation presents several measurement-based research from power system wide-area dynamics data analytics to real-time situational awareness application development. All the research are grounded on the power system phasor measurements provided by wide-area Frequency Monitoring Network (FNET/GridEye), which collects the Global Positioning System (GPS) signal synchronized power system phasor measurements at distribution networks. The synchronized frequency measurement at FNET/GridEye enables real-time monitoring of bulk power systems (BPSs) and allows the dynamics interpretation of power system disturbances. Research on both the dynamic and ambient frequency measurements are conducted in this dissertation.The dynamics refer to the frequency measurement when the system is experiencing sudden contingencies. This dissertation focuses on two types of contingency: generation trip and oscillation and conducts both data analytics and corresponding real-time applications. Historical generation trip events in North America are analyzed in purpose to develop a frequency measurement based indicator of power systems low inertia events. Then the frequency response study is extended to bulk power systems worldwide to derive its association with system capacity size. As an essential parameter involved in the frequency response, the magnitude of the power imbalances is estimated based on multiple linear regression for improved accuracy. With respect to situational awareness, a real-time FNET/GridEye generation trip detection tool is developed for PMU use at power utilities and ISOs, which overcomes several challenges brought by different data situations.Regarding the oscillation dynamics, statistical analysis is accomplished on power system inter-area oscillations demonstrating the yearly trend of low-frequency oscillations and the association with system load. A novel real-time application is developed to detect power systems sustained oscillation in large area. The application would significantly facilitate the power grid situational awareness enhancement and system resiliency improvement.Furthermore, an additional project is executed on the ambient frequency measurement at FNET/GridEye. This project discloses the correlation between power system frequency and the electric clock time drift. In practice, this technique serves to track the time drifts in traffic signal systems
    • …
    corecore