358 research outputs found

    Julius Kaljuvee, Ivan Reinwald, and Estonian pioneering ideas on meteorite impacts and cosmic neocatastrophism in the early 20th century

    Get PDF
    The article comprehensively presents little known Estonian contribution to the recognition of first meteorite impact structures in Europe, related to works of Julius Kaljuvee (Kalkun; 1869–1940) and Ivan Reinwald (Reinwaldt; 1878–1941). As an active educator specialized in geoscience, Kaljuvee was the first to hypothesize in 1922 that Kaali lake cirque in Saaremaa Island, Estonia, was created by meteorite impact. Thanks to mining engineer Reinwald, this assumption was accepted since 1928 due to the exhaustive field and borehole works of the latter (also as a result of exploration by several German scholars, including renowned Alfred Wegener). The impact origin of Kaali structure was proved finally in 1937 by finding of meteoritic iron splinters (as the first European site). Reinwald was not only outstanding investigator of meteorite cratering process, but also successful propagator of the Estonian discoveries in Anglophone mainstream science in 1930s. In addition, in his 1933 book, Kaljuvee first highlighted an impact explanation of enigmatic Ries structure in Bavaria, as well as probable magmatic activation in distant regions due to “the impulse of a giant meteorite”. He also outlined ideas of the inevitable periodic cosmic collisions in geological past (“rare event” theory nowadays), and resulting biotic crises. In a general conceptual context, the ideas of Kaljuvee were in noteworthy direct or indirect link with concepts of the great French naturalists – Laplace, Cuvier and Élie de Beaumont. However, some other Kaljuvee’s notions, albeit recurrent also later in geoscientific literature, are queer at the present time (e.g., the large-body impact as a driving force of continental drift and change the Earth axis, resulting in the Pleistocene glaciation). Thus, the Kaljuvee thought-provocative but premature dissertation is rather a record of distinguishing erudite activity, but not a real neocatastrophic landmark in geosciences history. Nevertheless, several concepts of Kaljuvee were revived as the key elements in the current geological paradigm

    Bibliography of terrestrial impact structures

    Get PDF
    This bibliography lists 105 terrestrial impact structures, of which 12 are proven structures, that is, structures associated with meteorites, and 93 are probable. Of the 93 probable structures, 18 are known to contain rocks with meteoritic components or to be enriched in meteoritic signature-elements, both of which enhance their probability of having originated by impact. Many of the structures investigated in the USSR to date are subsurface features that are completely or partly buried by sedimentary rocks. At least 16 buried impact structures have already been identified in North America and Europe. No proven nor probable submarine impact structure rising above the ocean floor is presently known; none has been found in Antarctica or Greenland. An attempt has been made to cite for each impact structure all literature published prior to mid-1983. The structures are presented in alphabetical order by continent, and their geographic distribution is indicated on a sketch map of each continent in which they occur. They are also listed tables in: (1) alphabetical order, (2) order of increasing latitude, (3) order of decreasing diameter, and (4) order of increasing geologic age

    Grand Canyon and Northern Arizona

    Get PDF
    Script of a radio program titled, "Exploring America with Carveth Wells", published by the Conoco Travel Bureau. Circa 1932

    To Catch a Comet: Learning from Halley's

    Get PDF

    Cosmos, culture and landscape : documenting, learning and sharing Aboriginal astronomical knowledge in contemporary society

    Get PDF
    Contemporary Australian Aboriginal astronomical knowledge, its documentation, sharing and communication is investigated, primarily from three Western Australian locations (1) Murchison region (associated with Murchison Radio-astronomy Observatory), (2) East Kimberley (Wolfe Creek Meteorite Crater) and (3) the South West of Western Australia. Astronomical knowledge is examined via three surveys and in-depth interviews with 27 participants. Digital imaging (360° & timelapse) is applied to create new and original Aboriginal astronomy resources (virtual tour and exhibition videos)

    Abstracts for the International Conference on Asteroids, Comets, Meteors 1991

    Get PDF
    Topics addressed include: chemical abundances; asteroidal belt evolution; sources of meteors and meteorites; cometary spectroscopy; gas diffusion; mathematical models; cometary nuclei; cratering records; imaging techniques; cometary composition; asteroid classification; radio telescopes and spectroscopy; magnetic fields; cosmogony; IUE observations; orbital distribution of asteroids, comets, and meteors; solar wind effects; computerized simulation; infrared remote sensing; optical properties; and orbital evolution

    To See the Unseen: A History of Planetary Radar Astronomy

    Get PDF
    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground-based facilities by this transformed planetary radar astronomy, as well as the upgrading of the Arecibo and Goldstone radars. A technical essay appended to this book provides an overview of planetary radar techniques, especially range-Doppler mapping

    SSERVI Annual Report: Year 4

    Get PDF
    The SSERVI Central Office forms the organizational, administrative and collaborative hub for the domestic and international teams, and is responsible for advocacy and ensuring the long-term health and relevance of the Institute. SSERVI has increased the cross-talk between NASAs space and human exploration programs, which is one of our primary goals. We bring multidisciplinary teams together to address fundamental and strategic questions pertinent to future human space exploration, and the results from that research are the primary products of the institute. The team and international partnership reports contain summaries of 2017 research accomplishments. Here we present the 2017 accomplishments by the SSERVI Central Office that focus on: 1) Supporting Our Teams, 2) Community Building, 3) Managing the Solar System Treks Portal (SSTP), and 4) Public Engagement

    Earth Science for Secondary Schools: Earth Science Teaching Curriculum

    Get PDF
    Creating this senior project, based on secondary Earth Science curriculum, will be directed toward teachers and will assist in lessons and instruction and reaching students at a deeper level. This Earth Science curriculum will challenge students and enlighten teachers. This curriculum will impact students in a way that they will never forget. After completing this course, the students will be knowledgeable and have a strong foundation in the fundamentals of Earth Science. Creating this curriculum will challenge students in subjects such as, the universe, biodiversity / conservation biology, introduction to soils, rocks and minerals, and the geography of California. The result of this project will inform high school students of the importance of knowing how the earth works and basic understanding of Earth systems

    Guidebook to the geology of Barringer Meteorite Crater, Arizona (a k a Meteor Crater)

    Get PDF
    prepared by David A. Kring.Target Sequence--Barringer Meteorite Impact Crater--Shock Metamorphism--Crater Rim Uplift and Crater Wall Collapse--Overturned Rim Sequence--Distribution of Ejecta--Projectile--Trajectory--Energy of Impact--Age of the Crater--Environmental Effects of the Impact--Post-Impact Lake--Crater Rim East Trail Guide--Crater Floor Trail Guide
    • …
    corecore