532 research outputs found

    Timing Measurement Platform for Arbitrary Black-Box Circuits Based on Transition Probability

    No full text

    Delay Measurements and Self Characterisation on FPGAs

    No full text
    This thesis examines new timing measurement methods for self delay characterisation of Field-Programmable Gate Arrays (FPGAs) components and delay measurement of complex circuits on FPGAs. Two novel measurement techniques based on analysis of a circuit's output failure rate and transition probability is proposed for accurate, precise and efficient measurement of propagation delays. The transition probability based method is especially attractive, since it requires no modifications in the circuit-under-test and requires little hardware resources, making it an ideal method for physical delay analysis of FPGA circuits. The relentless advancements in process technology has led to smaller and denser transistors in integrated circuits. While FPGA users benefit from this in terms of increased hardware resources for more complex designs, the actual productivity with FPGA in terms of timing performance (operating frequency, latency and throughput) has lagged behind the potential improvements from the improved technology due to delay variability in FPGA components and the inaccuracy of timing models used in FPGA timing analysis. The ability to measure delay of any arbitrary circuit on FPGA offers many opportunities for on-chip characterisation and physical timing analysis, allowing delay variability to be accurately tracked and variation-aware optimisations to be developed, reducing the productivity gap observed in today's FPGA designs. The measurement techniques are developed into complete self measurement and characterisation platforms in this thesis, demonstrating their practical uses in actual FPGA hardware for cross-chip delay characterisation and accurate delay measurement of both complex combinatorial and sequential circuits, further reinforcing their positions in solving the delay variability problem in FPGAs

    Hardware Certification for Real-time Safety-critical Systems: State of the Art

    Get PDF
    This paper discusses issues related to the RTCA document DO-254 Design Assurance Guidance for Airborne Electronic Hardware and its consequences for hardware certification. In particular, problems related to circuits’ compliance with DO-254 in avionics and other industries are considered. Extensive literature review of the subject is given, including current views on and experiences of chip manufacturers and EDA industry with qualification of hardware design tools, including formal approaches to hardware verification. Some results of the authors’ own study on tool qualification are presented

    Reconfigurable time interval measurement circuit incorporating a programmable gain time difference amplifier

    Get PDF
    PhD ThesisAs further advances are made in semiconductor manufacturing technology the performance of circuits is continuously increasing. Unfortunately, as the technology node descends deeper into the nanometre region, achieving the potential performance gain is becoming more of a challenge; due not only to the effects of process variation but also to the reduced timing margins between signals within the circuit creating timing problems. Production Standard Automatic Test Equipment (ATE) is incapable of performing internal timing measurements due, first to the lack of accessibility and second to the overall timing accuracy of the tester which is grossly inadequate. To address these issue ‘on-chip’ time measurement circuits have been developed in a similar way that built in self-test (BIST) evolved for ‘on-chip’ logic testing. This thesis describes the design and analysis of three time amplifier circuits. The analysis undertaken considers the operational aspects related to gain and input dynamic range, together with the robustness of the circuits to the effects of process, voltage and temperature (PVT) variations. The design which had the best overall performance was subsequently compared to a benchmark design, which used the ‘buffer delay offset’ technique for time amplification, and showed a marked 6.5 times improvement on the dynamic range extending this from 40 ps to 300ps. The new design was also more robust to the effects of PVT variations. The new time amplifier design was further developed to include an adjustable gain capability which could be varied in steps of approximately 7.5 from 4 to 117. The time amplifier was then connected to a 32-stage tapped delay line to create a reconfigurable time measurement circuit with an adjustable resolution range from 15 down to 0.5 ps and a dynamic range from 480 down to 16 ps depending upon the gain setting. The overall footprint of the measurement circuit, together with its calibration module occupies an area of 0.026 mm2 The final circuit, overall, satisfied the main design criteria for ‘on-chip’ time measurement circuitry, namely, it has a wide dynamic range, high resolution, robust to the effects of PVT and has a small area overhead.Umm Al-Qura University

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    A Low-Cost Unified Experimental FPGA Board for Cryptography Applications

    Get PDF
    This paper describes the evaluation of available experimental boards, the comparison of their supported set of experiments and other aspects. The second part of this evaluation is focused on the design process of the PCB (Printed Circuit Board) for an FPGA (Field Programmable Gate Array) based cryptography environment suitable for evaluating the latest trends in the IC (Integrated Circuit) security like Side–Channel Attacks (SCA) or Physically Unclonable Function (PUF). It leads to many criteria affecting the design process and also the suitability for evaluating and measuring results of the attacks and their countermeasures. The developed system should be open, versatile and unrestricted by the U.S. law [1]

    Transition Probability Test for an RO-Based Generator and the Relevance between the Randomness and the Number of ROs

    Get PDF
    A ring oscillator is a well-known circuit used for generating random numbers, and interested readers can find many research results concerning the evaluation of the randomness with a packaged test suit. However, the authors think there is room for evaluating the unpredictability of a sequence from another viewpoint. In this paper, the authors focus on Wold's RO-based generator and propose a statistical test to numerically evaluate the randomness of the RO-based generator. The test adopts the state transition probabilities in a Markov process and is designed to check the uniformity of the probabilities based on hypothesis testing. As a result, it is found that the RO-based generator yields a biased output from the viewpoint of the transition probability if the number of ROs is small. More precisely, the transitions 01 -> 01 and 11 -> 11 happen frequently when the number l of ROs is less than or equal to 10. In this sense, l > 10 is recommended for use in any application, though a packaged test suit is passed. Thus, the authors believe that the proposed test contributes to evaluating the unpredictability of a sequence when used together with available statistical test suits, such as NIST SP800-22

    Circuit design and analysis for on-FPGA communication systems

    No full text
    On-chip communication system has emerged as a prominently important subject in Very-Large- Scale-Integration (VLSI) design, as the trend of technology scaling favours logics more than interconnects. Interconnects often dictates the system performance, and, therefore, research for new methodologies and system architectures that deliver high-performance communication services across the chip is mandatory. The interconnect challenge is exacerbated in Field-Programmable Gate Array (FPGA), as a type of ASIC where the hardware can be programmed post-fabrication. Communication across an FPGA will be deteriorating as a result of interconnect scaling. The programmable fabrics, switches and the specific routing architecture also introduce additional latency and bandwidth degradation further hindering intra-chip communication performance. Past research efforts mainly focused on optimizing logic elements and functional units in FPGAs. Communication with programmable interconnect received little attention and is inadequately understood. This thesis is among the first to research on-chip communication systems that are built on top of programmable fabrics and proposes methodologies to maximize the interconnect throughput performance. There are three major contributions in this thesis: (i) an analysis of on-chip interconnect fringing, which degrades the bandwidth of communication channels due to routing congestions in reconfigurable architectures; (ii) a new analogue wave signalling scheme that significantly improves the interconnect throughput by exploiting the fundamental electrical characteristics of the reconfigurable interconnect structures. This new scheme can potentially mitigate the interconnect scaling challenges. (iii) a novel Dynamic Programming (DP)-network to provide adaptive routing in network-on-chip (NoC) systems. The DP-network architecture performs runtime optimization for route planning and dynamic routing which, effectively utilizes the in-silicon bandwidth. This thesis explores a new horizon in reconfigurable system design, in which new methodologies and concepts are proposed to enhance the on-FPGA communication throughput performance that is of vital importance in new technology processes

    A cell set for self-timed design using actel FPGAs

    Get PDF
    technical reportAsynchronous or self-timed systems that do not rely on a global clock to keep system components synchronized can offer significant advantages over traditional clocked circuits in a variety of applications. However, these systems require that suitable self-timed circuit primitives are available for building the system. This report describes a cell set designed for building self-timed circuits and systems using Actel field programmable gate arrays (FPGAs). The cells use a two-phase transition signalling protocol for control signals and a bundled protocol for data signals. This library of macro cells is designed to be used with the Workmen tool suite from VIEWlogic and the Action Logic System (ALS) from Actel
    • 

    corecore