4,234 research outputs found

    Towards a pivotal-based approach for business process alignment.

    Get PDF
    This article focuses on business process engineering, especially on alignment between business analysis and implementation. Through a business process management approach, different transformations interfere with process models in order to make them executable. To keep the consistency of process model from business model to IT model, we propose a pivotal metamodel-centric methodology. It aims at keeping or giving all requisite structural and semantic data needed to perform such transformations without loss of information. Through this we can ensure the alignment between business and IT. This article describes the concept of pivotal metamodel and proposes a methodology using such an approach. In addition, we present an example and the resulting benefits

    Analysis of methods

    Get PDF
    Information is one of an organization's most important assets. For this reason the development and maintenance of an integrated information system environment is one of the most important functions within a large organization. The Integrated Information Systems Evolution Environment (IISEE) project has as one of its primary goals a computerized solution to the difficulties involved in the development of integrated information systems. To develop such an environment a thorough understanding of the enterprise's information needs and requirements is of paramount importance. This document is the current release of the research performed by the Integrated Development Support Environment (IDSE) Research Team in support of the IISEE project. Research indicates that an integral part of any information system environment would be multiple modeling methods to support the management of the organization's information. Automated tool support for these methods is necessary to facilitate their use in an integrated environment. An integrated environment makes it necessary to maintain an integrated database which contains the different kinds of models developed under the various methodologies. In addition, to speed the process of development of models, a procedure or technique is needed to allow automatic translation from one methodology's representation to another while maintaining the integrity of both. The purpose for the analysis of the modeling methods included in this document is to examine these methods with the goal being to include them in an integrated development support environment. To accomplish this and to develop a method for allowing intra-methodology and inter-methodology model element reuse, a thorough understanding of multiple modeling methodologies is necessary. Currently the IDSE Research Team is investigating the family of Integrated Computer Aided Manufacturing (ICAM) DEFinition (IDEF) languages IDEF(0), IDEF(1), and IDEF(1x), as well as ENALIM, Entity Relationship, Data Flow Diagrams, and Structure Charts, for inclusion in an integrated development support environment

    A methodological proposal and tool support for the HL7 standards compliance in the development of health information systems

    Get PDF
    Health information systems are increasingly complex, and their development is presented as a challenge for software development companies offering quality, maintainable and interoperable products. HL7 (Health level 7) International, an international non-profit organization, defines and maintains standards related to health information systems. However, the modelling languages proposed by HL7 are far removed from standard languages and widely known by software engineers. In these lines, NDT is a software development methodology that has a support tool called NDT-Suite and is based, on the one hand, on the paradigm of model-driven engineering and, on the other hand, in UML that is a widely recognized standard language. This paper proposes an extension of the NDT methodology called MoDHE (Model Driven Health Engineering) to offer software engineers a methodology capable of modelling health information systems conforming to HL7 using UML domain models

    Cluster-Based Optimization of Cellular Materials and Structures for Crashworthiness

    Get PDF
    The objective of this work is to establish a cluster-based optimization method for the optimal design of cellular materials and structures for crashworthiness, which involves the use of nonlinear, dynamic finite element models. The proposed method uses a cluster-based structural optimization approach consisting of four steps: conceptual design generation, clustering, metamodel-based global optimization, and cellular material design. The conceptual design is generated using structural optimization methods. K-means clustering is applied to the conceptual design to reduce the dimensional of the design space as well as define the internal architectures of the multimaterial structure. With reduced dimension space, global optimization aims to improve the crashworthiness of the structure can be performed efficiently. The cellular material design incorporates two homogenization methods, namely, energy-based homogenization for linear and nonlinear elastic material models and mean-field homogenization for (fully) nonlinear material models. The proposed methodology is demonstrated using three designs for crashworthiness that include linear, geometrically nonlinear, and nonlinear models

    Metamodeling in EIA/CDIF - Meta-Metamodel and Metamodels

    Get PDF
    This article introduces the EIA/CDIF set of standards for the modeling of information systems and its exchange among computer-aided software tools of different vendors. It lays out the meta-metamodel and the standardized metamodels which are fully depicted in a hierarchical layout and annotated with the unique identifiers of all the standardized modeling concepts. The article also stresses the fact that EIA/CDIF has been used as the baseline in the creation of an international standard, the ISO/CDIF set of models, an ongoing project

    The i* framework for goal-oriented modeling

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-39417-6i* is a widespread framework in the software engineering field that supports goal-oriented modeling of socio-technical systems and organizations. At its heart lies a language offering concepts such as actor, dependency, goal and decomposition. i* models resemble a network of interconnected, autonomous, collaborative and dependable strategic actors. Around this language, several analysis techniques have emerged, e.g. goal satisfaction analysis and metrics computation. In this work, we present a consolidated version of the i* language based on the most adopted versions of the language. We define the main constructs of the language and we articulate them in the form of a metamodel. Then, we implement this version and a concrete technique, goal satisfaction analys is based on goal propagation, using ADOxx. Throughout the chapter, we used an example based on open source software adoption to illustrate the concepts and test the implementation.Peer ReviewedPostprint (author's final draft

    Generating collaborative systems for digital libraries: A model-driven approach

    Get PDF
    This is an open access article shared under a Creative Commons Attribution 3.0 Licence (http://creativecommons.org/licenses/by/3.0/). Copyright @ 2010 The Authors.The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework
    corecore