285 research outputs found

    X-ray Digital Tomosynthesis Imaging — Comparison of Reconstruction Algorithms in Terms of a Reduction in the Exposure Dose for Arthroplasty

    Get PDF
    Aims The purpose of this review was (1) to identify indications for volumetric X-ray digital tomosynthesis by using a conventional reconstruction technique [the filtered back-projection (FBP) algorithm] and modern reconstruction techniques [the maximum likelihood expectation maximization (MLEM) and simultaneous iterative reconstruction techniques (SIRT)] and (2) to compare the conventional and modern reconstruction techniques in terms of a reduction in the exposure dose

    DETECTION OF CARIES ADJACENT TO TOOTH COLORED PROXIMAL RESTORATIONS USING STATIONARY INTRAORAL TOMOSYNTHESIS

    Get PDF
    Objectives: Caries adjacent to restorations (CAR) is the most common reason for replacing restorations. This study compared the ability of stationary intraoral tomosynthesis (s-IOT) and conventional bitewing radiographs in detecting CAR. Methods: Extracted teeth (N=77) with 113 proximal tooth-colored restorations were used. Observers (N=7) utilized a 5-point scale to rate their confidence that CAR was present and stereomicroscopy was used to establish ground truth. Results: S-IOT had a statistically higher (ANOVA p0.05). Conclusion: S-IOT showed higher diagnostic accuracy and sensitivity than conventional bitewing radiographs for detecting caries around proximal composite restorations. While the clinical effect size is small, s-IOT is a promising imaging modality for advancing the detection of CAR.Master of Scienc

    State-Of-The-Art X-Ray Digital Tomosynthesis Imaging

    Get PDF
    Digital tomosynthesis (DT) is a notable modality in medical imaging because it shows the spread of the target area with lower radiation dose relative to computed tomography. In this section, we describe the technique in two parts: (1) image quality (contrast) and (2) DT image reconstruction algorithms, including state-of-the-art total variation minimization reconstruction algorithms with single-energy X-ray conventional polychromatic imaging and novel dual-energy (DE) virtual monochromatic imaging. The novel DE virtual monochromatic image-processing algorithm provides adequate overall performance (especially, reduction of beam-hardening, reduction of noise). The DE virtual monochromatic image-processing algorithm appears to be a promising new option for imaging in DT because it provides three-dimensional visualizations of high-contrast images that are far superior to those of images processed by using conventional single-energy polychromatic image-processing algorithms

    An Enhanced Visualization of DBT Imaging Using Blind Deconvolution and Total Variation Minimization Regularization

    Get PDF
    Digital Breast Tomosynthesis (DBT) presents out-of-plane artifacts caused by features of high intensity. Given observed data and knowledge about the point spread function (PSF), deconvolution techniques recover data from a blurred version. However, a correct PSF is difficult to achieve and these methods amplify noise. When no information is available about the PSF, blind deconvolution can be used. Additionally, Total Variation (TV) minimization algorithms have achieved great success due to its virtue of preserving edges while reducing image noise. This work presents a novel approach in DBT through the study of out-of-plane artifacts using blind deconvolution and noise regularization based on TV minimization. Gradient information was also included. The methodology was tested using real phantom data and one clinical data set. The results were investigated using conventional 2D slice-by-slice visualization and 3D volume rendering. For the 2D analysis, the artifact spread function (ASF) and Full Width at Half Maximum (FWHMMASF) of the ASF were considered. The 3D quantitative analysis was based on the FWHM of disks profiles at 90°, noise and signal to noise ratio (SNR) at 0° and 90°. A marked visual decrease of the artifact with reductions of FWHMASF (2D) and FWHM90° (volume rendering) of 23.8% and 23.6%, respectively, was observed. Although there was an expected increase in noise level, SNR values were preserved after deconvolution. Regardless of the methodology and visualization approach, the objective of reducing the out-of-plane artifact was accomplished. Both for the phantom and clinical case, the artifact reduction in the z was markedly visible

    Endorectal Digital Prostate Tomosynthesis

    Get PDF
    Several areas of prostate cancer (PCa) management, such as imaging permanent brachytherapy implants or small, aggressive lesions, benefit from high image resolution. Current PCa imaging methods can have inadequate resolution for imaging these areas. Endorectal digital prostate tomosynthesis (endoDPT), an imaging method that combines an external x-ray source and an endorectal x-ray sensor, can produce three-dimensional images of the prostate region that have high image resolution compared to typical methods. This high resolution may improve PCa management and increase positive outcomes in affected men. This dissertation presents the initial development of endoDPT, including system design, image quality assessment, and examples of possible applications to prostate imaging. Experiments using computational phantoms, physical phantoms, and canine prostate specimens were conducted. Initial system design was performed computationally and three methods of endoDPT image reconstruction were developed: shift and add (SAA), backprojection (BP), and filtered BP (FBP). A physical system was developed using an XDR intraoral x-ray sensor and a GE radiography unit. The resolution and radiation dose of endoDPT were measured and compared to a GE CT scanner. Canine prostate specimens that approximated clinical cases of PCa management were imaged and compared using endoDPT, the above CT scanner, and a GE MRI scanner. This study found that the resolution of endoDPT was significantly higher than CT. The radiation dose of endoDPT was significantly lower than CT in the regions of the phantom that were not in the endoDPT field of view (FoV). Inside the endoDPT FoV, the radiation dose ranged from significantly less than to significantly greater than CT. The endoDPT images of the canine prostate specimens demonstrated qualitative improvements in resolution compared to CT and MRI, but endoDPT had difficulty in visualizing larger structures, such as the prostate border. Overall, this study has demonstrated endoDPT has high image resolution compared to typical methods of PCa imaging. Future work will be focused on development of a prototype system that improves scanning efficiency that can be used to optimize endoDPT and perform pre-clinical studies

    GPU acceleration of a model-based iterative method for Digital Breast Tomosynthesis

    Get PDF
    Digital Breast Tomosynthesis (DBT) is a modern 3D Computed Tomography X-ray technique for the early detection of breast tumors, which is receiving growing interest in the medical and scientific community. Since DBT performs incomplete sampling of data, the image reconstruction approaches based on iterative methods are preferable to the classical analytic techniques, such as the Filtered Back Projection algorithm, providing fewer artifacts. In this work, we consider a Model-Based Iterative Reconstruction (MBIR) method well suited to describe the DBT data acquisition process and to include prior information on the reconstructed image. We propose a gradient-based solver named Scaled Gradient Projection (SGP) for the solution of the constrained optimization problem arising in the considered MBIR method. Even if the SGP algorithm exhibits fast convergence, the time required on a serial computer for the reconstruction of a real DBT data set is too long for the clinical needs. In this paper we propose a parallel SGP version designed to perform the most expensive computations of each iteration on Graphics Processing Unit (GPU). We apply the proposed parallel approach on three different GPU boards, with computational performance comparable with that of the boards usually installed in commercial DBT systems. The numerical results show that the proposed GPU-based MBIR method provides accurate reconstructions in a time suitable for clinical trials
    • …
    corecore