589 research outputs found

    Internet of Things in urban waste collection

    Get PDF
    Nowadays, the waste collection management has an important role in urban areas. This paper faces this issue and proposes the application of a metaheuristic for the optimization of a weekly schedule and routing of the waste collection activities in an urban area. Differently to several contributions in literature, fixed periodic routes are not imposed. The results significantly improve the performance of the company involved, both in terms of resources used and costs saving

    Good practice proposal for the implementation, presentation, and comparison of metaheuristics for solving routing problems

    Get PDF
    Researchers who investigate in any area related to computational algorithms (both dening new algorithms or improving existing ones) usually nd large diculties to test their work. Comparisons among dierent researches in this eld are often a hard task, due to the ambiguity or lack of detail in the presentation of the work and its results. On many occasions, the replication of the work conducted by other researchers is required, which leads to a waste of time and a delay in the research advances. The authors of this study propose a procedure to introduce new techniques and their results in the eld of routing problems. In this paper this procedure is detailed, and a set of good practices to follow are deeply described. It is noteworthy that this procedure can be applied to any combinatorial optimization problem. Anyway, the literature of this study is focused on routing problems. This eld has been chosen because of its importance in real world, and its relevance in the actual literature

    A new VRPPD model and a hybrid heuristic solution approach for e-tailing

    Get PDF
    We analyze a business model for e-supermarkets to enable multi-product sourcing capacity through co-opetition (collaborative competition). The logistics aspect of our approach is to design and execute a network system where “premium” goods are acquired from vendors at multiple locations in the supply network and delivered to customers. Our specific goals are to: (i) investigate the role of premium product offerings in creating critical mass and profit; (ii) develop a model for the multiple-pickup single-delivery vehicle routing problem in the presence of multiple vendors; and (iii) propose a hybrid solution approach. To solve the problem introduced in this paper, we develop a hybrid metaheuristic approach that uses a Genetic Algorithm for vendor selection and allocation, and a modified savings algorithm for the capacitated VRP with multiple pickup, single delivery and time windows (CVRPMPDTW). The proposed Genetic Algorithm guides the search for optimal vendor pickup location decisions, and for each generated solution in the genetic population, a corresponding CVRPMPDTW is solved using the savings algorithm. We validate our solution approach against published VRPTW solutions and also test our algorithm with Solomon instances modified for CVRPMPDTW

    An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems

    Get PDF
    Bat algorithm is a population metaheuristic proposed in 2010 which is based on the echolocation or bio-sonar characteristics of microbats. Since its first implementation, the bat algorithm has been used in a wide range of fields. In this paper, we present a discrete version of the bat algorithm to solve the well-known symmetric and asymmetric traveling salesman problems. In addition, we propose an improvement in the basic structure of the classic bat algorithm. To prove that our proposal is a promising approximation method, we have compared its performance in 37 instances with the results obtained by five different techniques: evolutionary simulated annealing, genetic algorithm, an island based distributed genetic algorithm, a discrete firefly algorithm and an imperialist competitive algorithm. In order to obtain fair and rigorous comparisons, we have conducted three different statistical tests along the paper: the Student's tt-test, the Holm's test, and the Friedman test. We have also compared the convergence behaviour shown by our proposal with the ones shown by the evolutionary simulated annealing, and the discrete firefly algorithm. The experimentation carried out in this study has shown that the presented improved bat algorithm outperforms significantly all the other alternatives in most of the cases

    An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems

    Get PDF
    Bat algorithm is a population metaheuristic proposed in 2010 which is based on the echolocation or bio-sonar characteristics of microbats. Since its first implementation, the bat algorithm has been used in a wide range of fields. In this paper, we present a discrete version of the bat algorithm to solve the well-known symmetric and asymmetric traveling salesman problems. In addition, we propose an improvement in the basic structure of the classic bat algorithm. To prove that our proposal is a promising approximation method, we have compared its performance in 37 instances with the results obtained by five different techniques: evolutionary simulated annealing, genetic algorithm, an island based distributed genetic algorithm, a discrete firefly algorithm and an imperialist competitive algorithm. In order to obtain fair and rigorous comparisons, we have conducted three different statistical tests along the paper: the Student's tt-test, the Holm's test, and the Friedman test. We have also compared the convergence behaviour shown by our proposal with the ones shown by the evolutionary simulated annealing, and the discrete firefly algorithm. The experimentation carried out in this study has shown that the presented improved bat algorithm outperforms significantly all the other alternatives in most of the cases

    An investigation of the ant-based hyper-heuristic for capacitated vehicle routing problem and traveling salesman problem

    Get PDF
    A brief observation on recent research of routing problems shows that most of the methods used to tackle the problems are using heuristics and metaheuristics; and they often use problem specific knowledge to build or improve solutions. In the last few years, research on hyper-heuristic has been investigated which aims to raise the generality of optimisation systems. This thesis is concerned with the investigation of ant-based hyper-heuristic. Ant algorithms have been applied to vehicle routing problems and have produced competitive results. Therefore, it is assumed that there is a reasonable possibility that ant-based hyperheuristic could perform well for the problem. The thesis first surveys the literature for some common solution methodologies for optimisation problems and explores in some detail the ant algorithms and ant algorithm hyperheuristic methods. Furthermore, the literature specifically concerns with routing problems; the capacitated routing problem (CVRP) and the travelling salesman problem (TSP). The thesis studies the ant system algorithm and further proposes the ant algorithm hyper-heuristic, which introduces a new pheromone update rule in order to improve its performance. The proposed approach, called the ant-based hyper-heuristic is tested to two routing problems; the CVRP and TSP. Although it does not produce any best known results, the experimental results have shown that it is competitive with other methods. Most importantly, it demonstrates how simple and easy to implement low level heuristics, with no extensive parameter tuning. Further analysis shows that the approach possesses learning mechanism when compared to random hyper-heuristic. The approach investigates the number of low level heuristics appropriate and found out that the more low level heuristics used, the better solution is generated. In addition an ACO hyper-heuristic which has two categories of pheromone updates is developed. However, ant-based hyper-heuristic performs better and this is inconsistent with the performance of ACO algorithm in the literature. In TSP, we utilise two different categories of low level heuristics, the TSP heuristics and the CVRP heuristics that were previously used for the CVRP. From the observation, it can be seen that by using any heuristics for the same class of problems, ant-based hyper-heuristic is seen to be able to produce competitive results. This has demonstrated that the ant-based hyper-heuristic is a reusable method. One major advantage of this work is the usage of the same parameter for all problem instances with simple moves and swap procedures. It is hoped that in the future, results obtained will be better than current results by using better intelligent low level heuristics

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines

    Exploring Heuristics for the Vehicle Routing Problem with Split Deliveries and Time Windows

    Get PDF
    This dissertation investigates the Vehicle Routing Problem with Split Deliveries and Time Windows. This problem assumes a depot of homogeneous vehicles and set of customers with deterministic demands requiring delivery. Split deliveries allow multiple visits to a customer and time windows restrict the time during which a delivery can be made. Several construction and local search heuristics are tested to determine their relative usefulness in generating solutions for this problem. This research shows a particular subset of the local search operators is particularly influential on solution quality and run time. Conversely, the construction heuristics tested do not significantly impact either. Several problem features are also investigated to determine their impact. Of the features explored, the ratio of customer demand to vehicle ratio revealed a significant impact on solution quality and influence on the effectiveness of the heuristics tested. Finally, this research introduces an ant colony metaheuristic coupled with a local search heuristic embedded within a dynamic program seeking to solve a Military Inventory Routing Problem with multiple-customer routes, stochastic supply, and deterministic demand. Also proposed is a suite of test problems for the Military Inventory Routing Problem
    • 

    corecore