543 research outputs found

    Energy Management of Grid-Connected Microgrids, Incorporating Battery Energy Storage and CHP Systems Using Mixed Integer Linear Programming

    Get PDF
    In this thesis, an energy management system (EMS) is proposed for use with battery energy storage systems (BESS) in solar photovoltaic-based (PV-BESS) grid-connected microgrids and combined heat and power (CHP) applications. As a result, the battery's charge/discharge power is optimised so that the overall cost of energy consumed is minimised, considering the variation in grid tariff, renewable power generation and load demand. The system is modelled as an economic load dispatch optimisation problem over a 24-hour time horizon and solved using mixed integer linear programming (MILP) for the grid-connected Microgrid and the CHP application. However, this formulation requires information about the predicted renewable energy power generation and load demand over the next 24 hours. Therefore, a long short-term memory (LSTM) neural network is proposed to achieve this. The receding horizon (RH) strategy is suggested to reduce the impact of prediction error and enable real-time implementation of the energy management system (EMS) that benefits from using actual generation and demand data in real-time. At each time-step, the LSTM predicts the generation and load data for the next 24 h. The dispatch problem is then solved, and the real-time battery charging or discharging command for only the first hour is applied. Real data are then used to update the LSTM input, and the process is repeated. Simulation results using the Ushant Island as a case study show that the proposed online optimisation strategy outperforms the offline optimisation strategy (with no RH), reducing the operating cost by 6.12%. The analyses of the impact of different times of use (TOU) and standard tariff in the energy management of grid-connected microgrids as it relates to the charge/discharge cycle of the BESS and the optimal operating cost of the Microgrid using the LSTM-MILP-RH approach is evaluated. Four tariffs UK tariff schemes are considered: (1) Residential TOU tariff (RTOU), (2) Economy seven tariff (E7T), (3) Economy ten tariff (E10T), and (4) Standard tariff (STD). It was found that the RTOU tariff scheme gives the lowest operating cost, followed by the E10T tariff scheme with savings of 63.5% and 55.5%, respectively, compared to the grid-only operation. However, the RTOU and E10 tariff scheme is mainly used for residential applications with the duck curve load demand structure. For community grid-connected microgrid applications except for residential-only communities, the E7T and STD, with 54.2% and 39.9%, respectively, are the most likely options offered by energy suppliers. The use of combined heat and power (CHP) systems has recently increased due to their high combined efficiency and low emissions. Using CHP systems in behind-the-meter applications, however, can introduce some challenges. Firstly, the CHP system must operate in load-following mode to prevent power export to the grid. Secondly, if the load drops below a predefined threshold, the engine will operate at a lower temperature and hence lower efficiency, as the fuel is only half-burnt, creating significant emissions. The aforementioned issues may be solved by combining CHP with a battery energy storage system. However, the dispatch of CHP and BESS must be optimised. Offline optimisation methods based on load prediction will not prevent power export to the grid due to prediction errors. Therefore, a real-time EMS using a combination of LSTM neural networks, MILP, and RH control strategy is proposed. Simulation results show that the proposed method can prevent power export to the grid and reduce the operational cost by 8.75% compared to the offline method. The finding shows that the BESS is a valuable asset for sustainable energy transition. However, they must be operated safely to guarantee operational cost reduction and longer life for the BESS

    An MILP approach for the optimal design of renewable battery-hydrogen energy systems for off-grid insular communities

    Get PDF
    Abstract The optimal sizing of stand-alone renewable H2-based microgrids requires the load demand to be reliably satisfied by means of local renewable energy supported by a hybrid battery/hydrogen storage unit, while minimizing the system costs. However, this task is challenging because of the high number of components that have to be installed and operated. In this work, an MILP optimization framework has been developed and applied to the off-grid village of Ginostra (on the Stromboli island, Italy), which is a good example of several other insular sites throughout the Mediterranean area. A year-long time horizon was considered to model the seasonal storage, which is necessary for off-grid areas that wish to achieve energy independence by relying on local renewable sources. The degradation costs of batteries and H2-based devices were included in the objective function of the optimization problem, i.e., the annual cost of the system. Efficiency and investment cost curves were considered for the electrolyzer and fuel cell components in order to obtain a more detailed and precise techno-economic estimation. The design optimization was also performed with the inclusion of a general demand response program (DRP) to assess its impact on the sizing results. Moreover, the effectiveness of the proposed MILP-based method was tested by comparing it with a more traditional approach, based on a metaheuristic algorithm for the optimal sizing complemented with ruled-based strategies for the system operation. Thanks to its longer-term storage capability, hydrogen is required for the optimal system configuration in order to reach energy self-sufficiency. Finally, considering the possibility of load deferral, the electricity generation cost can be reduced to an extent that depends on the amount of load that is allowed to participate in the DRP scheme. This cost reduction is mainly due to the decreased capacity of the battery storage system

    Smart green charging scheme of centralized electric vehicle stations

    Get PDF
    This paper presses a smart charging decision-making criterion that significantly contributes in enhancing the scheduling of the electric vehicles (EVs) during the charging process. The proposed criterion aims to optimize the charging time, select the charging methodology either DC constant current constant voltage (DC-CCCV) or DC multi-stage constant currents (DC-MSCC), maximize the charging capacity as well as minimize the queuing delay per EV, especially during peak hours. The decision-making algorithms have been developed by utilizing metaheuristic algorithms including the Genetic Algorithm (GA) and Water Cycle Optimization Algorithm (WCOA). The utility of the proposed models has been investigated while considering the Mixed Integer Linear Programming (MILP) as a benchmark. Furthermore, the proposed models are seeded using the Monte Carlo simulation technique by estimating the EVs arriving density to the EVS across the day. WCOA has shown an overall reduction of 13% and 8.5% in the total charging time while referring to MILP and GA respectively

    A comparison of fuzzy-based energy management systems adjusted by nature-inspired algorithms

    Get PDF
    The growing energy demand around the world has increased the usage of renewable energy sources (RES) such as photovoltaic and wind energies. The combination of traditional power systems and RESs has generated diverse problems due especially to the stochastic nature of RESs. Microgrids (MG) arise to address these types of problems and to increase the penetration of RES to the utility network. A microgrid includes an energy management system (EMS) to operate its components and energy sources efficiently. The objectives pursued by the EMS are usually economically related to minimizing the operating costs of the MG or maximizing its income. However, due to new regulations of the network operators, a new objective related to the minimization of power peaks and fluctuations in the power profile exchanged with the utility network has taken great interest in recent years. In this regard, EMSs based on off-line trained fuzzy logic control (FLC) have been proposed as an alternative approach to those based on on-line optimization mixed-integer linear (or nonlinear) programming to reduce computational efforts. However, the procedure to adjust the FLC parameters has been barely addressed. This parameter adjustment is an optimization problem itself that can be formulated in terms of a cost/objective function and is susceptible to being solved by metaheuristic nature-inspired algorithms. In particular, this paper evaluates a methodology for adjusting the FLC parameters of the EMS of a residential microgrid that aims to minimize the power peaks and fluctuations on the power profile exchanged with the utility network through two nature-inspired algorithms, namely particle swarm optimization and differential evolution. The methodology is based on the definition of a cost function to be optimized. Numerical simulations on a specific microgrid example are presented to compare and evaluate the performances of these algorithms, also including a comparison with other ones addressed in previous works such as the Cuckoo search approach. These simulations are further used to extract useful conclusions for the FLC parameters adjustment for off-line-trained EMS based designs.This work is part of the projects 2019-PIC-003-CTE and 2020-EXT-007 from the Research Group of Propagation, Electronic Control, and Networking (PROCONET) of Universidad de las Fuerzas Armadas ESPE. This work has been developed with the support of VLIR-UOS and the Belgian Development Cooperation (DGD) under the project EC2020SIN322A101. This work has been partially supported by the Spanish Ministry of Industry and Competitiveness under the grant DPI2017-85404 and PID2019-111443RB-100.Peer ReviewedObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantPostprint (published version

    Hybrid microgrid energy management and control based on metaheuristic-driven vector-decoupled algorithm considering intermittent renewable sources and electric vehicles charging lot

    Get PDF
    Energy management and control of hybrid microgrids is a challenging task due to the varying nature of operation between AC and DC components which leads to voltage and frequency issues. This work utilizes a metaheuristic-based vector-decoupled algorithm to balance the control and operation of hybrid microgrids in the presence of stochastic renewable energy sources and electric vehicles charging structure. The AC and DC parts of the microgrid are coupled via a bidirectional interlinking converter, with the AC side connected to a synchronous generator and portable AC loads, while the DC side is connected to a photovoltaic system and an electric vehicle charging system. To properly ensure safe and efficient exchange of power within allowable voltage and frequency levels, the vector-decoupled control parameters of the bidirectional converter are tuned via hybridization of particle swarm optimization and artificial physics optimization. The proposed control algorithm ensures the stability of both voltage and frequency levels during the severe condition of islanding operation and high pulsed demands conditions as well as the variability of renewable source production. The proposed methodology is verified in a state-of-the-art hardware-in-the-loop testbed. The results show robustness and effectiveness of the proposed algorithm in managing the real and reactive power exchange between the AC and DC parts of the microgrid within safe and acceptable voltage and frequency levels

    Review of Researches on Techno-Economic Analysis and Environmental Impact of Hybrid Energy Systems

    Get PDF
    Hybrid energy systems, which are combinations of two or more renewable and non-renewable energy sources, have been identified as a viable mechanism to address the limitations of a single renewable energy source, utilized for electricity generation. In view of this, several research works have been carried out to determine the optimal mix of different renewable and non-renewable energy resources used for electricity generation. This paper presents a comprehensive review of the optimization approaches proposed and adopted by various authors in the literature for optimal sizing of hybrid energy systems. It is observed that the objective functions - considered by a large percentage of researchers to optimize the sizing of hybrid energy systems - are cost minimization of the generated electricity, system reliability enhancement and environmental pollution reduction. Other factors covered in the literature are equally discussed in this article. Similarly, simulation and optimization software used for the same purpose are covered in the paper. In essence, the main aim of this paper is to provide a scope into the works that have been carried out in the field of hybrid energy systems, used for electricity generation with the view to informing researchers and members of the public alike, on trends in methods applied in optimal sizing of hybrid energy systems. It is believed that the information provided in this paper is very crucial in advancing research in the field

    Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks

    Get PDF
    In the last decade, distribution systems are experiencing a drastic transformation with the advent of new technologies. In fact, distribution networks are no longer passive systems, considering the current integration rates of new agents such as distributed generation, electrical vehicles and energy storage, which are greatly influencing the way these systems are operated. In addition, the intrinsic DC nature of these components, interfaced to the AC system through power electronics converters, is unlocking the possibility for new distribution topologies based on AC/DC networks. This paper analyzes the evolution of AC distribution systems, the advantages of AC/DC hybrid arrangements and the active role that the new distributed agents may play in the upcoming decarbonized paradigm by providing different ancillary services.Ministerio de Economía y Competitividad ENE2017-84813-RUnión Europea (Programa Horizonte 2020) 76409

    Optimal load management of autonomous power systems in conditions of water shortage

    Get PDF
    The issues of optimizing the operation of micro hydropower plants in conditions of water scarcity, performed by additional connection to the grid of an energy storage system and wind power turbine, as well as optimal load management, are considered. It is assumed that the load of the system is a concentrated autonomous power facility that consumes only active power. The paper presents a rigorous mathematical formulation of the problem, the solution of which corresponds to the minimum cost of an energy storage system and a wind turbine, which allows for uninterrupted supply of electricity to power facilities in conditions of water shortage necessary for the operation of micro hydropower plants (under unfavorable hydrological conditions). The problem is formulated as a nonlinear multi-objective optimization problem to apply metaheuristic stochastic algorithms. At the same time, a significant part of the problem is taken out and framed as a subproblem of linear programming which will make it possible to solve it by a deterministic simplex method that guarantees to find the exact global optimum. This approach will significantly increase the efficiency of solving the entire problem by combining metaheuristic algorithms and taking into account expert knowledge about the problem being solved
    corecore