183 research outputs found

    Fuzzy Adaptive Tuning of a Particle Swarm Optimization Algorithm for Variable-Strength Combinatorial Test Suite Generation

    Full text link
    Combinatorial interaction testing is an important software testing technique that has seen lots of recent interest. It can reduce the number of test cases needed by considering interactions between combinations of input parameters. Empirical evidence shows that it effectively detects faults, in particular, for highly configurable software systems. In real-world software testing, the input variables may vary in how strongly they interact, variable strength combinatorial interaction testing (VS-CIT) can exploit this for higher effectiveness. The generation of variable strength test suites is a non-deterministic polynomial-time (NP) hard computational problem \cite{BestounKamalFuzzy2017}. Research has shown that stochastic population-based algorithms such as particle swarm optimization (PSO) can be efficient compared to alternatives for VS-CIT problems. Nevertheless, they require detailed control for the exploitation and exploration trade-off to avoid premature convergence (i.e. being trapped in local optima) as well as to enhance the solution diversity. Here, we present a new variant of PSO based on Mamdani fuzzy inference system \cite{Camastra2015,TSAKIRIDIS2017257,KHOSRAVANIAN2016280}, to permit adaptive selection of its global and local search operations. We detail the design of this combined algorithm and evaluate it through experiments on multiple synthetic and benchmark problems. We conclude that fuzzy adaptive selection of global and local search operations is, at least, feasible as it performs only second-best to a discrete variant of PSO, called DPSO. Concerning obtaining the best mean test suite size, the fuzzy adaptation even outperforms DPSO occasionally. We discuss the reasons behind this performance and outline relevant areas of future work.Comment: 21 page

    Genetic Improvement of Software: a Comprehensive Survey

    Get PDF
    Genetic improvement (GI) uses automated search to find improved versions of existing software. We present a comprehensive survey of this nascent field of research with a focus on the core papers in the area published between 1995 and 2015. We identified core publications including empirical studies, 96% of which use evolutionary algorithms (genetic programming in particular). Although we can trace the foundations of GI back to the origins of computer science itself, our analysis reveals a significant upsurge in activity since 2012. GI has resulted in dramatic performance improvements for a diverse set of properties such as execution time, energy and memory consumption, as well as results for fixing and extending existing system functionality. Moreover, we present examples of research work that lies on the boundary between GI and other areas, such as program transformation, approximate computing, and software repair, with the intention of encouraging further exchange of ideas between researchers in these fields

    Genetic Improvement of Software: a Comprehensive Survey

    Get PDF
    Genetic improvement uses automated search to find improved versions of existing software. We present a comprehensive survey of this nascent field of research with a focus on the core papers in the area published between 1995 and 2015. We identified core publications including empirical studies, 96% of which use evolutionary algorithms (genetic programming in particular). Although we can trace the foundations of genetic improvement back to the origins of computer science itself, our analysis reveals a significant upsurge in activity since 2012. Genetic improvement has resulted in dramatic performance improvements for a diverse set of properties such as execution time, energy and memory consumption, as well as results for fixing and extending existing system functionality. Moreover, we present examples of research work that lies on the boundary between genetic improvement and other areas, such as program transformation, approximate computing, and software repair, with the intention of encouraging further exchange of ideas between researchers in these fields

    Model based test suite minimization using metaheuristics

    Get PDF
    Software testing is one of the most widely used methods for quality assurance and fault detection purposes. However, it is one of the most expensive, tedious and time consuming activities in software development life cycle. Code-based and specification-based testing has been going on for almost four decades. Model-based testing (MBT) is a relatively new approach to software testing where the software models as opposed to other artifacts (i.e. source code) are used as primary source of test cases. Models are simplified representation of a software system and are cheaper to execute than the original or deployed system. The main objective of the research presented in this thesis is the development of a framework for improving the efficiency and effectiveness of test suites generated from UML models. It focuses on three activities: transformation of Activity Diagram (AD) model into Colored Petri Net (CPN) model, generation and evaluation of AD based test suite and optimization of AD based test suite. Unified Modeling Language (UML) is a de facto standard for software system analysis and design. UML models can be categorized into structural and behavioral models. AD is a behavioral type of UML model and since major revision in UML version 2.x it has a new Petri Nets like semantics. It has wide application scope including embedded, workflow and web-service systems. For this reason this thesis concentrates on AD models. Informal semantics of UML generally and AD specially is a major challenge in the development of UML based verification and validation tools. One solution to this challenge is transforming a UML model into an executable formal model. In the thesis, a three step transformation methodology is proposed for resolving ambiguities in an AD model and then transforming it into a CPN representation which is a well known formal language with extensive tool support. Test case generation is one of the most critical and labor intensive activities in testing processes. The flow oriented semantic of AD suits modeling both sequential and concurrent systems. The thesis presented a novel technique to generate test cases from AD using a stochastic algorithm. In order to determine if the generated test suite is adequate, two test suite adequacy analysis techniques based on structural coverage and mutation have been proposed. In terms of structural coverage, two separate coverage criteria are also proposed to evaluate the adequacy of the test suite from both perspectives, sequential and concurrent. Mutation analysis is a fault-based technique to determine if the test suite is adequate for detecting particular types of faults. Four categories of mutation operators are defined to seed specific faults into the mutant model. Another focus of thesis is to improve the test suite efficiency without compromising its effectiveness. One way of achieving this is identifying and removing the redundant test cases. It has been shown that the test suite minimization by removing redundant test cases is a combinatorial optimization problem. An evolutionary computation based test suite minimization technique is developed to address the test suite minimization problem and its performance is empirically compared with other well known heuristic algorithms. Additionally, statistical analysis is performed to characterize the fitness landscape of test suite minimization problems. The proposed test suite minimization solution is extended to include multi-objective minimization. As the redundancy is contextual, different criteria and their combination can significantly change the solution test suite. Therefore, the last part of the thesis describes an investigation into multi-objective test suite minimization and optimization algorithms. The proposed framework is demonstrated and evaluated using prototype tools and case study models. Empirical results have shown that the techniques developed within the framework are effective in model based test suite generation and optimizatio

    Optimization Techniques for Automated Software Test Data Generation

    Get PDF
    Esta tesis propone una variedad de contribuciones al campo de pruebas evolutivas. Hemos abarcados un amplio rango de aspectos relativos a las pruebas de programas: código fuente procedimental y orientado a objetos, paradigmas estructural y funcional, problemas mono-objetivo y multi-objetivo, casos de prueba aislados y secuencias de pruebas, y trabajos teóricos y experimentales. En relación a los análisis llevados a cabo, hemos puesto énfasis en el análisis estadístico de los resultados para evaluar la significancia práctica de los resultados. En resumen, las principales contribuciones de la tesis son: Definición de una nueva medida de distancia para el operador instanceof en programas orientados a objetos: En este trabajo nos hemos centrado en un aspecto relacionado con el software orientado a objetos, la herencia, para proponer algunos enfoques que pueden ayudar a guiar la búsqueda de datos de prueba en el contexto de las pruebas evolutivas. En particular, hemos propuesto una medida de distancia para computar la distancia de ramas en presencia del operador instanceof en programas Java. También hemos propuesto dos operadores de mutación que modifican las soluciones candidatas basadas en la medida de distancia definida. Definición de una nueva medida de complejidad llamada ``Branch Coverage Expectation'': En este trabajo nos enfrentamos a la complejidad de pruebas desde un punto de vista original: un programa es más complejo si es más difícil de probar de forma automática. Consecuentemente, definimos la ``Branch Coverage Expectation'' para proporcionar conocimiento sobre la dificultad de probar programas. La fundación de esta medida se basa en el modelo de Markov del programa. El modelo de Markov proporciona fundamentos teóricos. El análisis de esta medida indica que está más correlacionada con la cobertura de rama que las otras medidas de código estáticas. Esto significa que esto es un buen modo de estimar la dificultad de probar un programa. Predicción teórica del número de casos de prueba necesarios para cubrir un porcentaje concreto de un programa: Nuestro modelo de Markov del programa puede ser usado para proporcionar una estimación del número de casos de prueba necesarios para cubrir un porcentaje concreto del programa. Hemos comparado nuestra predicción teórica con la media de las ejecuciones reales de un generador de datos de prueba. Este modelo puede ayudar a predecir la evolución de la fase de pruebas, la cual consecuentemente puede ahorrar tiempo y coste del proyecto completo. Esta predicción teórica podría ser también muy útil para determinar el porcentaje del programa cubierto dados un número de casos de prueba. Propuesta de enfoques para resolver el problema de generación de datos de prueba multi-objetivo: En ese capítulo estudiamos el problema de la generación multi-objetivo con el fin de analizar el rendimiento de un enfoque directo multi-objetivo frente a la aplicación de un algoritmo mono-objetivo seguido de una selección de casos de prueba. Hemos evaluado cuatro algoritmos multi-objetivo (MOCell, NSGA-II, SPEA2, y PAES) y dos algoritmos mono-objetivo (GA y ES), y dos algoritmos aleatorios. En términos de convergencia hacía el frente de Pareto óptimo, GA y MOCell han sido los mejores resolutores en nuestra comparación. Queremos destacar que el enfoque mono-objetivo, donde se ataca cada rama por separado, es más efectivo cuando el programa tiene un grado de anidamiento alto. Comparativa de diferentes estrategias de priorización en líneas de productos y árboles de clasificación: En el contexto de pruebas funcionales hemos tratado el tema de la priorización de casos de prueba con dos representaciones diferentes, modelos de características que representan líneas de productos software y árboles de clasificación. Hemos comparado cinco enfoques relativos al método de clasificación con árboles y dos relativos a líneas de productos, cuatro de ellos propuestos por nosotros. Los resultados nos indican que las propuestas para ambas representaciones basadas en un algoritmo genético son mejores que el resto en la mayoría de escenarios experimentales, es la mejor opción cuando tenemos restricciones de tiempo o coste. Definición de la extensión del método de clasificación con árbol para la generación de secuencias de pruebas: Hemos definido formalmente esta extensión para la generación de secuencias de pruebas que puede ser útil para la industria y para la comunidad investigadora. Sus beneficios son claros ya que indudablemente el coste de situar el artefacto bajo pruebas en el siguiente estado no es necesario, a la vez que reducimos significativamente el tamaño de la secuencia utilizando técnicas metaheurísticas. Particularmente nuestra propuesta basada en colonias de hormigas es el mejor algoritmo de la comparativa, siendo el único algoritmo que alcanza la cobertura máxima para todos los modelos y tipos de cobertura. Exploración del efecto de diferentes estrategias de seeding en el cálculo de frentes de Pareto óptimos en líneas de productos: Estudiamos el comportamiento de algoritmos clásicos multi-objetivo evolutivos aplicados a las pruebas por pares de líneas de productos. El grupo de algoritmos fue seleccionado para cubrir una amplia y diversa gama de técnicas. Nuestra evaluación indica claramente que las estrategias de seeding ayudan al proceso de búsqueda de forma determinante. Cuanta más información se disponga para crear esta población inicial, mejores serán los resultados obtenidos. Además, gracias al uso de técnicas multi-objetivo podemos proporcionar un conjunto de pruebas adecuado mayor o menor, en resumen, que mejor se adapte a sus restricciones económicas o tecnológicas. Propuesta de técnica exacta para la computación del frente de Pareto óptimo en líneas de productos software: Hemos propuesto un enfoque exacto para este cálculo en el caso multi-objetivo con cobertura paiwise. Definimos un programa lineal 0-1 y un algoritmo basado en resolutores SAT para obtener el frente de Pareto verdadero. La evaluación de los resultados nos indica que, a pesar de ser un fantástico método para el cálculo de soluciones óptimas, tiene el inconveniente de la escalabilidad, ya que para modelos grandes el tiempo de ejecución sube considerablemente. Tras realizar un estudio de correlaciones, confirmamos nuestras sospechas, existe una alta correlación entre el tiempo de ejecución y el número de productos denotado por el modelo de características del programa

    A hybrid kidney algorithm strategy for combinatorial interaction testing problem

    Get PDF
    Combinatorial Interaction Testing (CIT) generates a sampled test case set (Final Test Suite (FTS)) instead of all possible test cases. Generating the FTS with the optimum size is a computational optimization problem (COP) as well as a Non-deterministic Polynomial hard (NP-hard) problem. Recent studies have implemented hybrid metaheuristic algorithms as the basis for CIT strategy. However, the existing hybrid metaheuristic-based CIT strategies generate a competitive FTS size, there is no single CIT strategy can overcome others existing in all cases. In addition, the hybrid metaheuristic-based CIT strategies require more execution time than their own original algorithm-based strategies. Kidney Algorithm (KA) is a recent metaheuristic algorithm and has high efficiency and performance in solving different optimization problems against most of the state-of-the-art of metaheuristic algorithms. However, KA has limitations in the exploitation and exploration processes as well as the balancing control process is needed to be improved. These shortages cause KA to fail easily into the local optimum. This study proposes a low-level hybridization of KA with the mutation operator and improve the filtration process in KA to form a recently Hybrid Kidney Algorithm (HKA). HKA addresses the limitations in KA by improving the algorithm's exploration and exploitation processes by hybridizing KA with mutation operator, and improve the balancing control process by enhancing the filtration process in KA. HKA improves the efficiency in terms of generating an optimum FTS size and enhances the performance in terms of the execution time. HKA has been adopted into the CIT strategy as HKA based CIT Strategy (HKAS) to generate the most optimum FTS size. The results of HKAS shows that HKAS can generate the optimum FTS size in more than 67% of the benchmarking experiments as well as contributes by 34 new optimum size of FTS. HKAS also has better efficiency and performance than KAS. HKAS is the first hybrid metaheuristic-based CIT strategy that generates an optimum FTS size with less execution time than the original algorithm-based CIT strategy. Apart from supporting different CIT features: uniform/VS CIT, IOR CIT as well as the interaction strength up to 6, this study also introduces another recently variant of KA which are Improved KA (IKA) and Mutation KA (MKA) as well as new CIT strategies which are IKA-based (IKAS) and MKA-based (MKAS)
    corecore