22 research outputs found

    On Computable Protein Functions

    Get PDF
    Proteins are biological machines that perform the majority of functions necessary for life. Nature has evolved many different proteins, each of which perform a subset of an organism’s functional repertoire. One aim of biology is to solve the sparse high dimensional problem of annotating all proteins with their true functions. Experimental characterisation remains the gold standard for assigning function, but is a major bottleneck due to resource scarcity. In this thesis, we develop a variety of computational methods to predict protein function, reduce the functional search space for proteins, and guide the design of experimental studies. Our methods take two distinct approaches: protein-centric methods that predict the functions of a given protein, and function-centric methods that predict which proteins perform a given function. We applied our methods to help solve a number of open problems in biology. First, we identified new proteins involved in the progression of Alzheimer’s disease using proteomics data of brains from a fly model of the disease. Second, we predicted novel plastic hydrolase enzymes in a large data set of 1.1 billion protein sequences from metagenomes. Finally, we optimised a neural network method that extracts a small number of informative features from protein networks, which we used to predict functions of fission yeast proteins

    Cereal Genomics II

    Get PDF
    During the last decades, major advances have been made in the field of cereal genomics. For instance, high-density genetic maps, physical maps, QTL maps and even draft genome sequence have become available for several cereal species. This has been facilitated by the development of next generation sequencing (NGS) technologies, so that, it is now possible to sequence genomes of hundreds or thousands of accessions of an individual cereal crop. Significant amounts of data generated using these latest NGS technologies created a demand for computational tools to analyse this massive data. These developments related to technology and the tools, along with their applications not only to plant and genome biology but also to breeding have been documented in this volume. The volume, entitled “Cereal Genomics II”, therefore supplements the earlier edited volume “Cereal Genomics” published in 2004. The new volume has updated chapters, from the leading authorities in their fields, on molecular markers, next generation sequencing platform and their use for QTL analysis, domestication studies, functional genomics and molecular breeding. In addition, there are also chapters on computational genomics, whole genome sequencing and comparative genomics of cereals. The book should prove useful to students, teachers and young research workers as a ready reference to the latest information on cereal genomics

    New Trends in Environmental Engineering, Agriculture, Food Production, and Analysis

    Get PDF
    This Special Issue presents the latest advances in agriculture, aquaculture, food technology and environmental protection and engineering, discussing, among others, the following issues: new technologies in water, stormwater and wastewater treatment; water saving, lake restoration; new sludge and waste management systems; biodiesel production from animal fat waste; the microbiological quality of compound fish feeds for aquaculture; the role of technological processes to improve food quality and safety; new trends in the analysis of food and food components including in vitro, in vivo, and in silico analyses; and functional and structural aspects of bioactivities of food molecules
    corecore