6 research outputs found

    Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation

    Get PDF
    Recent advances reveal that metabolic reprogramming is required for adequate antiviral responses of dendritic cells (DCs) that possess the capacity to initiate innate and adaptive immune responses. Several reports indicate that Toll-like receptor (TLR) stimulation of DCs is accompanied by a rapid induction of glycolysis; however, the metabolic requirements of retinoic-acid inducible gene I (RIG-I)-like receptor (RLR) activation have not defined either in conventional DCs (cDCs) or in plasmacytoid DCs (pDCs) that are the major producers of type I interferons (IFN) upon viral infections. To sense viruses and trigger an early type I IFN response, pDCs rely on endosomal TLRs, whereas cDCs employ cytosolic RIG-I, which is constitutively present in their cytoplasm. We previously found that RIG-I is upregulated in pDCs upon endosomal TLR activation and contributes to the late phase of type I IFN responses. Here we report that TLR9-driven activation of human pDCs leads to a metabolic transition to glycolysis supporting the production of type I IFNs, whereas RIG-I-mediated antiviral responses of pDCs do not require glycolysis and rather rely on oxidative phosphorylation (OXPHOS) activity. In particular, TLR9-activated pDCs show increased extracellular acidification rate (ECAR), lactate production, and upregulation of key glycolytic genes indicating an elevation in glycolytic flux. Furthermore, administration of 2-deoxy-D-glucose (2-DG), an inhibitor of glycolysis, significantly impairs the TLR9-induced secretion of type I IFNs by human pDCs. In contrast, RIG-I stimulation of pDCs does not result in any alterations of ECAR, and type I IFN production is not inhibited but rather promoted by 2-DG treatment. Moreover, pDCs activated via TLR9 but not RIG-I in the presence of 2-DG are impaired in their capacity to prime allogeneic na茂ve CD8+ T cell proliferation. Interestingly, human monocyte-derived DCs (moDC) triggered via RIG-I show a commitment to glycolysis to promote type I IFN production and T cell priming in contrast to pDCs. Our findings reveal for the first time, that pDCs display a unique metabolic profile; TLR9-driven but not RIG-I-mediated activation of pDCs requires glycolytic reprogramming. Nevertheless, the metabolic signature of RIG-I-stimulated moDCs is characterized by glycolysis suggesting that RIG-I-induced metabolic alterations are rather cell type-specific and not receptor-specific

    Metagene projection characterizes GEN2.2 and CAL-1 as relevant human plasmacytoid dendritic cell models.

    No full text
    Plasmacytoid dendritic cells (pDC) play a major role in the regulation of adaptive and innate immunity. Human pDC are difficult to isolate from peripheral blood and do not survive in culture making the study of their biology challenging. Recently, two leukemic counterparts of pDC, CAL-1 and GEN2.2, have been proposed as representative models of human pDC. Nevertheless, their relationship with pDC has been established only by means of particular functional and phenotypic similarities. With the aim of characterizing GEN2.2 and CAL-1 in the context of the main circulating immune cell populations we have performed microarray gene expression profiling of GEN2.2 and carried out an integrated analysis using publicly available gene expression datasets of CAL-1 and the main circulating primary leukocyte lineages. Our results show that GEN2.2 and CAL-1 share common gene expression programs with primary pDC, clustering apart from the rest of circulating hematopoietic lineages. We have also identified common differentially expressed genes that can be relevant in pDC biology. In addition, we have revealed the common and differential pathways activated in primary pDC and cell lines upon CpG stimulatio. R code and data are available in the supplementary material. [email protected] or [email protected]. Supplementary data are available at Bioinformatics online
    corecore