654 research outputs found

    Hypermedia-based discovery for source selection using low-cost linked data interfaces

    Get PDF
    Evaluating federated Linked Data queries requires consulting multiple sources on the Web. Before a client can execute queries, it must discover data sources, and determine which ones are relevant. Federated query execution research focuses on the actual execution, while data source discovery is often marginally discussed-even though it has a strong impact on selecting sources that contribute to the query results. Therefore, the authors introduce a discovery approach for Linked Data interfaces based on hypermedia links and controls, and apply it to federated query execution with Triple Pattern Fragments. In addition, the authors identify quantitative metrics to evaluate this discovery approach. This article describes generic evaluation measures and results for their concrete approach. With low-cost data summaries as seed, interfaces to eight large real-world datasets can discover each other within 7 minutes. Hypermedia-based client-side querying shows a promising gain of up to 50% in execution time, but demands algorithms that visit a higher number of interfaces to improve result completeness

    Data Centric Peer-to-Peer Communication in Power Grids

    Get PDF
    We study the use of peer-to-peer based declarative data management to enable efficient monitoring and control of power transmission and distribution networks. We propose methods and an architecture for data centric communication in power networks; a proof-of-concept decentralized communication infrastructure is presented that uses and advances state of the art peer-to-peer and distributed data management protocols to provide real time access to network state information. We propose methods for adaptive network reconfiguration and self-repair mechanisms to handle fault situations. To efficiently handle complex queries, we present a centralized metadata index, and propose a query language and execution method that allows us to handle high volume data streams in-network

    Data Management in the APPA System

    Get PDF
    International audienceCombining Grid and P2P technologies can be exploited to provide high-level data sharing in large-scale distributed environments. However, this combination must deal with two hard problems: the scale of the network and the dynamic behavior of the nodes. In this paper, we present our solution in APPA (Atlas Peer-to-Peer Architecture), a data management system with high-level services for building large-scale distributed applications. We focus on data availability and data discovery which are two main requirements for implementing large-scale Grids. We have validated APPA's services through a combination of experimentation over Grid5000, which is a very large Grid experimental platform, and simulation using SimJava. The results show very good performance in terms of communication cost and response time

    AmbientDB: P2P Data Management Middleware for Ambient Intelligence

    Get PDF
    The future generation of consumer electronics devices is envisioned to provide automatic cooperation between devices and run applications that are sensitive to people's likings, personalized to their requirements, anticipatory of their behavior and responsive to their presence. We see this `Ambient Intelligence' as a key feature of future pervasive computing. We focus here on one of the challenges in realizing this vision: information management. This entails integrating, querying, synchronizing and evolving structured data, on a heterogeneous and ad-hoc collection of (mobile) devices. Rather than hard-coding data management functionality in each individual application, we argue for adding highlevel data management functionalities to the distributed middleware layer. Our AmbientDB P2P database management system addresses this by providing a global database abstraction over an ad-hoc network of heterogeneous peers

    A collaborative, semantic and context-aware search engine

    Get PDF
    Search engines help people to find information in the largest public knowledge system of the world: the Web. Unfortunately its size makes very complex to discover the right information. The users are faced lots of useless results forcing them to select one by one the most suitable. The new generation of search engines evolve from keyword-based indexing and classification to more sophisticated techniques considering the meaning, the context and the usage of information. We argue about the three key aspects: collaboration, geo-referencing and semantics. Collaboration distributes storage, processing and trust on a world-wide network of nodes running on users’ computers, getting rid of bottlenecks and central points of failures. The geo-referencing of catalogued resources allows contextualisation based on user position. Semantic analysis lets to increase the results relevance. In this paper, we expose the studies, the concepts and the solutions of a research project to introduce these three key features in a novel search engine architecture.213-21

    ElfStore: A Resilient Data Storage Service for Federated Edge and Fog Resources

    Full text link
    Edge and fog computing have grown popular as IoT deployments become wide-spread. While application composition and scheduling on such resources are being explored, there exists a gap in a distributed data storage service on the edge and fog layer, instead depending solely on the cloud for data persistence. Such a service should reliably store and manage data on fog and edge devices, even in the presence of failures, and offer transparent discovery and access to data for use by edge computing applications. Here, we present Elfstore, a first-of-its-kind edge-local federated store for streams of data blocks. It uses reliable fog devices as a super-peer overlay to monitor the edge resources, offers federated metadata indexing using Bloom filters, locates data within 2-hops, and maintains approximate global statistics about the reliability and storage capacity of edges. Edges host the actual data blocks, and we use a unique differential replication scheme to select edges on which to replicate blocks, to guarantee a minimum reliability and to balance storage utilization. Our experiments on two IoT virtual deployments with 20 and 272 devices show that ElfStore has low overheads, is bound only by the network bandwidth, has scalable performance, and offers tunable resilience.Comment: 24 pages, 14 figures, To appear in IEEE International Conference on Web Services (ICWS), Milan, Italy, 201

    RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions

    Get PDF
    The Semantic Web enables the possibility to model, create and query resources found on the Web. Enabling the full potential of its technologies at the Internet level requires infrastructures that can cope with scalability challenges and support various types of queries. The attractive features of the Peer-to-Peer (P2P) communication model such as decentralization, scalability, fault-tolerance seems to be a natural solution to deal with these challenges. Consequently, the combination of the Semantic Web and the P2P model can be a highly innovative attempt to harness the strengths of both technologies and come up with a scalable infrastructure for RDF data storage and retrieval. In this respect, this survey details the research works that adopt this combination and gives an insight on how to deal with the RDF data at the indexing and querying levels.Le Web Sémantique permet de modéliser, créer et faire des requêtes sur les ressources disponibles sur le Web. Afin de permettre à ses technologies d'exploiter leurs potentiels à l'échelle de l'Internet, il est nécessaire qu'elles reposent sur des infrastructures qui puissent passer à l'échelle ainsi que de répondre aux exigences d'expressivité des types de requêtes qu'elles offrent. Les bonnes propriétés qu'offrent les dernières générations de systèmes pair-à- pair en termes de décentralisation, de tolérance aux pannes ainsi que de passage à l'échelle en font d'eux des candidats prometteurs. La combinaison du modèle pair-à-pair et des technologies du Web Sémantique est une tentative innovante ayant pour but de fournir une infrastructure capable de passer à l'échelle et pouvant stocker et rechercher des données de type RDF. Dans ce contexte, ce rapport présente un état de l'art et discute en détail des travaux autour de systèmes pair-à-pair qui traitent des données de type RDF à large échelle. Nous détaillons leurs mécanismes d'indexation de données ainsi que le traitement des divers types de requêtes offerts

    Intelligent query processing in P2P networks: semantic issues and routing algorithms

    Get PDF
    P2P networks have become a commonly used way of disseminating content on the Internet. In this context, constructing efficient and distributed P2P routing algorithms for complex environments that include a huge number of distributed nodes with different computing and network capabilities is a major challenge. In the last years, query routing algorithms have evolved by taking into account different features (provenance, nodes' history, topic similarity, etc.). Such features are usually stored in auxiliary data structures (tables, matrices, etc.), which provide an extra knowledge engineering layer on top of the network, resulting in an added semantic value for specifying algorithms for efficient query routing. This article examines the main existing algorithms for query routing in unstructured P2P networks in which semantic aspects play a major role. A general comparative analysis is included, associated with a taxonomy of P2P networks based on their degree of decentralization and the different approaches adopted to exploit the available semantic aspects.Fil: Nicolini, Ana Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Lorenzetti, Carlos Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Chesñevar, Carlos Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentin
    • …
    corecore