378 research outputs found

    Cybersecurity knowledge graphs

    Get PDF
    Cybersecurity knowledge graphs, which represent cyber-knowledge with a graph-based data model, provide holistic approaches for processing massive volumes of complex cybersecurity data derived from diverse sources. They can assist security analysts to obtain cyberthreat intelligence, achieve a high level of cyber-situational awareness, discover new cyber-knowledge, visualize networks, data flow, and attack paths, and understand data correlations by aggregating and fusing data. This paper reviews the most prominent graph-based data models used in this domain, along with knowledge organization systems that define concepts and properties utilized in formal cyber-knowledge representation for both background knowledge and specific expert knowledge about an actual system or attack. It is also discussed how cybersecurity knowledge graphs enable machine learning and facilitate automated reasoning over cyber-knowledge

    Industrial networks and IIoT: Now and future trends

    Get PDF
    Connectivity is the one word summary for Industry 4.0 revolution. The importance of Internet of Things (IoT) and Industrial IoT (IIoT) have been increased dramatically with the rise of industrialization and industry 4.0. As new opportunities bring their own challenges, with the massive interconnected devices of the IIoT, cyber security of those networks and privacy of their users have become an important aspect. Specifically, intrusion detection for industrial networks (IIoT) has great importance. For instance, it is a key factor in improving the safe operation of the smart grid systems yet protecting the privacy of the consumers at the same time. In the same manner, data streaming is a valid option when the analysis is to be pushed from the cloud to the fog for industrial networks to provide agile response, since it brings the advantage of fast action on intrusion detection and also can buy time for intrusion mitigation. In order to dive deep in industrial networks, basic ground needs to be settled. Hence, this chapter serves in this manner, by presenting basic and emerging technologies along with ideas and discussions: First, an introduction of semiconductor evolution is provided along with the up-to-date hi-tech wired/wireless communication solutions for industrial networks. This is followed by a thorough representation of future trends in industrial environments. More importantly, enabling technologies for industrial networks is also presented. Finally, the chapter is concluded with a summary of the presentations along with future projections of IIoT networks

    Система виявлення мережевих аномалій за допомогою гібриду неконтрольованої та керованої нейронної мережі

    Get PDF
    In this article realization method of attacks and anomalies detection with the use of training of ordinary and attacking packages, respectively. The method that was used to teach an attack on is a combination of an uncontrollable and controlled neural network. In an uncontrolled network, attacks are classified in smaller categories, taking into account their features and using the self- organized map. To manage clusters, a neural network based on back-propagation method used. We use PyBrain as the main framework for designing, developing and learning perceptron data. This framework has a sufficient number of solutions and algorithms for training, designing and testing various types of neural networks. Software architecture is presented using a procedural-object approach. Because there is no need to save intermediate result of the program (after learning entire perceptron is stored in the file), all the progress of learning is stored in the normal files on hard disk.У цій статті спосіб реалізації атак та виявлення аномалій із використанням тренінгу звичайних та атакувальних пакетів відповідно. Метод, який використовувався для навчання нападу, - це поєднання неконтрольованої та керованої нейронної мережі. У неконтрольованій мережі напади класифікуються на менші категорії з урахуванням їх особливостей та використання самоорганізованої карти. Для управління кластерами використовується нейронна мережа, заснована на методі зворотного поширення. Ми використовуємо PyBrain як основну основу для проектування, розробки та вивчення даних перцептрону. Цей фреймворк має достатню кількість рішень та алгоритмів для навчання, проектування та тестування різних типів нейронних мереж. Архітектура програмного забезпечення представлена з використанням процедурно-об’єктного підходу. Оскільки немає необхідності зберігати проміжний результат програми (після навчання весь персептрон зберігається у файлі), весь хід навчання зберігається у звичайних файлах на жорсткому диску

    TOWARDS A HOLISTIC EFFICIENT STACKING ENSEMBLE INTRUSION DETECTION SYSTEM USING NEWLY GENERATED HETEROGENEOUS DATASETS

    Get PDF
    With the exponential growth of network-based applications globally, there has been a transformation in organizations\u27 business models. Furthermore, cost reduction of both computational devices and the internet have led people to become more technology dependent. Consequently, due to inordinate use of computer networks, new risks have emerged. Therefore, the process of improving the speed and accuracy of security mechanisms has become crucial.Although abundant new security tools have been developed, the rapid-growth of malicious activities continues to be a pressing issue, as their ever-evolving attacks continue to create severe threats to network security. Classical security techniquesfor instance, firewallsare used as a first line of defense against security problems but remain unable to detect internal intrusions or adequately provide security countermeasures. Thus, network administrators tend to rely predominantly on Intrusion Detection Systems to detect such network intrusive activities. Machine Learning is one of the practical approaches to intrusion detection that learns from data to differentiate between normal and malicious traffic. Although Machine Learning approaches are used frequently, an in-depth analysis of Machine Learning algorithms in the context of intrusion detection has received less attention in the literature.Moreover, adequate datasets are necessary to train and evaluate anomaly-based network intrusion detection systems. There exist a number of such datasetsas DARPA, KDDCUP, and NSL-KDDthat have been widely adopted by researchers to train and evaluate the performance of their proposed intrusion detection approaches. Based on several studies, many such datasets are outworn and unreliable to use. Furthermore, some of these datasets suffer from a lack of traffic diversity and volumes, do not cover the variety of attacks, have anonymized packet information and payload that cannot reflect the current trends, or lack feature set and metadata.This thesis provides a comprehensive analysis of some of the existing Machine Learning approaches for identifying network intrusions. Specifically, it analyzes the algorithms along various dimensionsnamely, feature selection, sensitivity to the hyper-parameter selection, and class imbalance problemsthat are inherent to intrusion detection. It also produces a new reliable dataset labeled Game Theory and Cyber Security (GTCS) that matches real-world criteria, contains normal and different classes of attacks, and reflects the current network traffic trends. The GTCS dataset is used to evaluate the performance of the different approaches, and a detailed experimental evaluation to summarize the effectiveness of each approach is presented. Finally, the thesis proposes an ensemble classifier model composed of multiple classifiers with different learning paradigms to address the issue of detection accuracy and false alarm rate in intrusion detection systems

    Enhanced Prediction of Network Attacks Using Incomplete Data

    Get PDF
    For years, intrusion detection has been considered a key component of many organizations’ network defense capabilities. Although a number of approaches to intrusion detection have been tried, few have been capable of providing security personnel responsible for the protection of a network with sufficient information to make adjustments and respond to attacks in real-time. Because intrusion detection systems rarely have complete information, false negatives and false positives are extremely common, and thus valuable resources are wasted responding to irrelevant events. In order to provide better actionable information for security personnel, a mechanism for quantifying the confidence level in predictions is needed. This work presents an approach which seeks to combine a primary prediction model with a novel secondary confidence level model which provides a measurement of the confidence in a given attack prediction being made. The ability to accurately identify an attack and quantify the confidence level in the prediction could serve as the basis for a new generation of intrusion detection devices, devices that provide earlier and better alerts for administrators and allow more proactive response to events as they are occurring

    Inferring malicious network events in commercial ISP networks using traffic summarisation

    Get PDF
    With the recent increases in bandwidth available to home users, traffic rates for commercial national networks have also been increasing rapidly. This presents a problem for any network monitoring tool as the traffic rate they are expected to monitor is rising on a monthly basis. Security within these networks is para- mount as they are now an accepted home of trade and commerce. Core networks have been demonstrably and repeatedly open to attack; these events have had significant material costs to high profile targets. Network monitoring is an important part of network security, providing in- formation about potential security breaches and in understanding their impact. Monitoring at high data rates is a significant problem; both in terms of processing the information at line rates, and in terms of presenting the relevant information to the appropriate persons or systems. This thesis suggests that the use of summary statistics, gathered over a num- ber of packets, is a sensible and effective way of coping with high data rates. A methodology for discovering which metrics are appropriate for classifying signi- ficant network events using statistical summaries is presented. It is shown that the statistical measures found with this methodology can be used effectively as a metric for defining periods of significant anomaly, and further classifying these anomalies as legitimate or otherwise. In a laboratory environment, these metrics were used to detect DoS traffic representing as little as 0.1% of the overall network traffic. The metrics discovered were then analysed to demonstrate that they are ap- propriate and rational metrics for the detection of network level anomalies. These metrics were shown to have distinctive characteristics during DoS by the analysis of live network observations taken during DoS events. This work was implemented and operated within a live system, at multiple sites within the core of a commercial ISP network. The statistical summaries are generated at city based points of presence and gathered centrally to allow for spacial and topological correlation of security events. The architecture chosen was shown to be exible in its application. The system was used to detect the level of VoIP traffic present on the network through the implementation of packet size distribution analysis in a multi-gigabit environment. It was also used to detect unsolicited SMTP generators injecting messages into the core. ii Monitoring in a commercial network environment is subject to data protec- tion legislation. Accordingly the system presented processed only network and transport layer headers, all other data being discarded at the capture interface. The system described in this thesis was operational for a period of 6 months, during which a set of over 140 network anomalies, both malicious and benign were observed over a range of localities. The system design, example anomalies and metric analysis form the majority of this thesis

    Internet of Things for Sustainability: Perspectives in Privacy, Cybersecurity, and Future Trends

    Get PDF
    In the sustainability IoT, the cybersecurity risks to things, sensors, and monitoring systems are distinct from the conventional networking systems in many aspects. The interaction of sustainability IoT with the physical world phenomena (e.g., weather, climate, water, and oceans) is mostly not found in the modern information technology systems. Accordingly, actuation, the ability of these devices to make changes in real world based on sensing and monitoring, requires special consideration in terms of privacy and security. Moreover, the energy efficiency, safety, power, performance requirements of these device distinguish them from conventional computers systems. In this chapter, the cybersecurity approaches towards sustainability IoT are discussed in detail. The sustainability IoT risk categorization, risk mitigation goals, and implementation aspects are analyzed. The openness paradox and data dichotomy between privacy and sharing is analyzed. Accordingly, the IoT technology and security standard developments activities are highlighted. The perspectives on opportunities and challenges in IoT for sustainability are given. Finally, the chapter concludes with a discussion of sustainability IoT cybersecurity case studies

    Flow-oriented anomaly-based detection of denial of service attacks with flow-control-assisted mitigation

    Get PDF
    Flooding-based distributed denial-of-service (DDoS) attacks present a serious and major threat to the targeted enterprises and hosts. Current protection technologies are still largely inadequate in mitigating such attacks, especially if they are large-scale. In this doctoral dissertation, the Computer Network Management and Control System (CNMCS) is proposed and investigated; it consists of the Flow-based Network Intrusion Detection System (FNIDS), the Flow-based Congestion Control (FCC) System, and the Server Bandwidth Management System (SBMS). These components form a composite defense system intended to protect against DDoS flooding attacks. The system as a whole adopts a flow-oriented and anomaly-based approach to the detection of these attacks, as well as a control-theoretic approach to adjust the flow rate of every link to sustain the high priority flow-rates at their desired level. The results showed that the misclassification rates of FNIDS are low, less than 0.1%, for the investigated DDOS attacks, while the fine-grained service differentiation and resource isolation provided within the FCC comprise a novel and powerful built-in protection mechanism that helps mitigate DDoS attacks
    corecore