39 research outputs found

    A Query Integrator and Manager for the Query Web

    Get PDF
    We introduce two concepts: the Query Web as a layer of interconnected queries over the document web and the semantic web, and a Query Web Integrator and Manager (QI) that enables the Query Web to evolve. QI permits users to write, save and reuse queries over any web accessible source, including other queries saved in other installations of QI. The saved queries may be in any language (e.g. SPARQL, XQuery); the only condition for interconnection is that the queries return their results in some form of XML. This condition allows queries to chain off each other, and to be written in whatever language is appropriate for the task. We illustrate the potential use of QI for several biomedical use cases, including ontology view generation using a combination of graph-based and logical approaches, value set generation for clinical data management, image annotation using terminology obtained from an ontology web service, ontology-driven brain imaging data integration, small-scale clinical data integration, and wider-scale clinical data integration. Such use cases illustrate the current range of applications of QI and lead us to speculate about the potential evolution from smaller groups of interconnected queries into a larger query network that layers over the document and semantic web. The resulting Query Web could greatly aid researchers and others who now have to manually navigate through multiple information sources in order to answer specific questions

    LabKey Server: An open source platform for scientific data integration, analysis and collaboration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely.</p> <p>Results</p> <p>To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment.</p> <p>Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350 organizations. It tracks roughly 27,000 assay runs, 860,000 specimen vials and 1,300,000 vial transfers.</p> <p>Conclusions</p> <p>Sharing data, analysis tools and infrastructure can speed the efforts of large research consortia by enhancing efficiency and enabling new insights. The Atlas installation of LabKey Server demonstrates the utility of the LabKey platform for collaborative research. Stable, supported builds of LabKey Server are freely available for download at <url>http://www.labkey.org</url>. Documentation and source code are available under the Apache License 2.0.</p

    Big Data in Laboratory Medicine—FAIR Quality for AI?

    Get PDF
    Laboratory medicine is a digital science. Every large hospital produces a wealth of data each day—from simple numerical results from, e.g., sodium measurements to highly complex output of “-omics” analyses, as well as quality control results and metadata. Processing, connecting, storing, and ordering extensive parts of these individual data requires Big Data techniques. Whereas novel technologies such as artificial intelligence and machine learning have exciting application for the augmentation of laboratory medicine, the Big Data concept remains fundamental for any sophisticated data analysis in large databases. To make laboratory medicine data optimally usable for clinical and research purposes, they need to be FAIR: findable, accessible, interoperable, and reusable. This can be achieved, for example, by automated recording, connection of devices, efficient ETL (Extract, Transform, Load) processes, careful data governance, and modern data security solutions. Enriched with clinical data, laboratory medicine data allow a gain in pathophysiological insights, can improve patient care, or can be used to develop reference intervals for diagnostic purposes. Nevertheless, Big Data in laboratory medicine do not come without challenges: the growing number of analyses and data derived from them is a demanding task to be taken care of. Laboratory medicine experts are and will be needed to drive this development, take an active role in the ongoing digitalization, and provide guidance for their clinical colleagues engaging with the laboratory data in research

    The Translational Medicine Ontology and Knowledge Base: driving personalized medicine by bridging the gap between bench and bedside

    Get PDF
    Background: Translational medicine requires the integration of knowledge using heterogeneous data from health care to the life sciences. Here, we describe a collaborative effort to produce a prototype Translational Medicine Knowledge Base (TMKB) capable of answering questions relating to clinical practice and pharmaceutical drug discovery. Results: We developed the Translational Medicine Ontology (TMO) as a unifying ontology to integrate chemical, genomic and proteomic data with disease, treatment, and electronic health records. We demonstrate the use of Semantic Web technologies in the integration of patient and biomedical data, and reveal how such a knowledge base can aid physicians in providing tailored patient care and facilitate the recruitment of patients into active clinical trials. Thus, patients, physicians and researchers may explore the knowledge base to better understand therapeutic options, efficacy, and mechanisms of action. Conclusions: This work takes an important step in using Semantic Web technologies to facilitate integration of relevant, distributed, external sources and progress towards a computational platform to support personalized medicine. Availability: TMO can be downloaded from http://code.google.com/p/translationalmedicineontology and TMKB can be accessed at http://tm.semanticscience.org/sparql

    The Cardiac Atlas Project--An Imaging Database for Computational Modeling and Statistical Atlases of the Heart

    Get PDF
    MOTIVATION: Integrative mathematical and statistical models of cardiac anatomy and physiology can play a vital role in understanding cardiac disease phenotype and planning therapeutic strategies. However, the accuracy and predictive power of such models is dependent upon the breadth and depth of noninvasive imaging datasets. The Cardiac Atlas Project (CAP) has established a large-scale database of cardiac imaging examinations and associated clinical data in order to develop a shareable, web-accessible, structural and functional atlas of the normal and pathological heart for clinical, research and educational purposes. A goal of CAP is to facilitate collaborative statistical analysis of regional heart shape and wall motion and characterize cardiac function among and within population groups. RESULTS: Three main open-source software components were developed: (i) a database with web-interface; (ii) a modeling client for 3D + time visualization and parametric description of shape and motion; and (iii) open data formats for semantic characterization of models and annotations. The database was implemented using a three-tier architecture utilizing MySQL, JBoss and Dcm4chee, in compliance with the DICOM standard to provide compatibility with existing clinical networks and devices. Parts of Dcm4chee were extended to access image specific attributes as search parameters. To date, approximately 3000 de-identified cardiac imaging examinations are available in the database. All software components developed by the CAP are open source and are freely available under the Mozilla Public License Version 1.1 (http://www.mozilla.org/MPL/MPL-1.1.txt)

    The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart

    Get PDF
    Motivation: Integrative mathematical and statistical models of cardiac anatomy and physiology can play a vital role in understanding cardiac disease phenotype and planning therapeutic strategies. However, the accuracy and predictive power of such models is dependent upon the breadth and depth of noninvasive imaging datasets. The Cardiac Atlas Project (CAP) has established a large-scale database of cardiac imaging examinations and associated clinical data in order to develop a shareable, web-accessible, structural and functional atlas of the normal and pathological heart for clinical, research and educational purposes. A goal of CAP is to facilitate collaborative statistical analysis of regional heart shape and wall motion and characterize cardiac function among and within population groups

    Datenintegration in biomedizinischen ForschungsverbĂŒnden auf Basis von serviceorientierten Architekturen

    Get PDF
    In biomedizinischen ForschungsverbĂŒnden besteht der Bedarf, Forschungsdaten innerhalb des Verbundes und darĂŒber hinaus gemeinsam zu nutzen. Hierzu wird zunĂ€chst ein Anforderungsmodell erstellt, das anschließend konsolidiert und abstrahiert wird. Daraus ergibt sich ein Referenzmodell fĂŒr Anforderungen, welches anderen ForschungsverbĂŒnden als Grundlage fĂŒr die beschleunigte Erstellung eines eigenen SOA-Systems dienen kann. Zum Referenzmodell wird weiterhin eine konkrete Instanz als Anforderungsmodell fĂŒr den durch die Deutsche Forschungsgemeinschaft (DFG) geförderten geförderten Sonderforschungsbereich/Transregio 77 „Leberkrebs–von der molekularen Pathogenese zur zielgerichteten Therapie“ beschrieben. Aus dem Anforderungsmodell wird ein IT-Architekturmodell fĂŒr den Verbund abgeleitet, welches aus Komponentenmodell, Verteilungsmodell und der Sicherheitsarchitektur besteht. Die Architektur wird unter Verwendung des Cancer Biomedical Informatics Grid (caBIG) umgesetzt. Dabei werden die in den Projekten anfallenden Daten in Datendienste umgewandelt und so fĂŒr den Zugriff in einer SOA bereitgestellt. Durch die Datendienste kann die Anforderung der Projekte, die Kontrolle ĂŒber die eigenen Daten zu behalten, weitgehend erfĂŒllt werden: Die Dienste können mit individuellen Zugriffsberechtigungen versehen und dezentral betrieben werden, bei Bedarf auch im Verantwortungsbereich der Projekte selbst. Der Zugriff auf das System erfolgt mittels eines Webbrowsers, mit dem sich die Mitarbeiter des Verbundes unter Verwendung einer individuellen Zugangskennung an einem zentralen Portal anmelden. Zum einfachen und sicheren Austausch von Dokumenten innerhalb des Verbundes wird ein Dokumentenmanagementsystem in die SOA eingebunden. Um die Forschungsdaten aus verschiedenen Quellen auch auf semantischer Ebene integrieren zu können, werden Metadatensysteme entwickelt. Hierzu wird ein kontrolliertes Vokabular erstellt, das mit der hierfĂŒr entwickelten Methode aus den von den Projekten verwendeten Terminologien gewonnen wird. Die so gesammelten Begriffe werden mit standardisierten Vokabularien aus dem Unified Medical Language System (UMLS) abgeglichen. HierfĂŒr wird ein Software-Werkzeug erstellt, das diesen Abgleich unterstĂŒtzt. Des Weiteren hat sich im Rahmen dieser Arbeit herausgestellt, dass keine Ontologie existiert, um die in der biomedizinischen Forschung hĂ€ufig verwendeten Zelllinien einschließlich ihrer Wachstumsbedingungen umfassend abzubilden. Daher wird mit der Cell Culture Ontology (CCONT) eine neue Ontologie fĂŒr Zelllinien entwickelt. Dabei wird Wert darauf gelegt, bereits etablierte Ontologien dieses Bereichs soweit wie möglich zu integrieren. Somit wird hier eine vollstĂ€ndige IT-Architektur auf der Basis einer SOA zum Austausch und zur Integration von Forschungsdaten innerhalb von ForschungsverbĂŒnden beschrieben. Das Referenzmodell fĂŒr Anforderungen, die IT-Architektur und die Metadatenspezifikationen stehen fĂŒr andere ForschungsverbĂŒnde und darĂŒber hinaus als Grundlagen fĂŒr eigene Entwicklungen zur VerfĂŒgung. Gleiches gilt fĂŒr die entwickelten Software-Werkzeuge zum UMLS-Abgleich von Vokabularen und zur automatisierten Modellerstellung fĂŒr caBIG-Datendienste

    Intégration de ressources en recherche translationnelle : une approche unificatrice en support des systÚmes de santé "apprenants"

    Get PDF
    Learning health systems (LHS) are gradually emerging and propose a complimentary approach to translational research challenges by implementing close coupling of health care delivery, research and knowledge translation. To support coherent knowledge sharing, the system needs to rely on an integrated and efficient data integration platform. The framework and its theoretical foundations presented here aim at addressing this challenge. Data integration approaches are analysed in light of the requirements derived from LHS activities and data mediation emerges as the one most adapted for a LHS. The semantics of clinical data found in biomedical sources can only be fully derived by taking into account, not only information from the structural models (field X of table Y), but also terminological information (e.g. International Classification of Disease 10th revision) used to encode facts. The unified framework proposed here takes this into account. The platform has been implemented and tested in context of the TRANSFoRm endeavour, a European project funded by the European commission. It aims at developing a LHS including clinical activities in primary care. The mediation model developed for the TRANSFoRm project, the Clinical Data Integration Model, is presented and discussed. Results from TRANSFoRm use-cases are presented. They illustrate how a unified data sharing platform can support and enhance prospective research activities in context of a LHS. In the end, the unified mediation framework presented here allows sufficient expressiveness for the TRANSFoRm needs. It is flexible, modular and the CDIM mediation model supports the requirements of a primary care LHS.Les systĂšmes de santĂ© "apprenants" (SSA) prĂ©sentent une approche complĂ©mentaire et Ă©mergente aux problĂšmes de la recherche translationnelle en couplant de prĂšs les soins de santĂ©, la recherche et le transfert de connaissances. Afin de permettre un flot d’informations cohĂ©rent et optimisĂ©, le systĂšme doit se doter d’une plateforme intĂ©grĂ©e de partage de donnĂ©es. Le travail prĂ©sentĂ© ici vise Ă  proposer une approche de partage de donnĂ©es unifiĂ©e pour les SSA. Les grandes approches d’intĂ©gration de donnĂ©es sont analysĂ©es en fonction du SSA. La sĂ©mantique des informations cliniques disponibles dans les sources biomĂ©dicales est la rĂ©sultante des connaissances des modĂšles structurelles des sources mais aussi des connaissances des modĂšles terminologiques utilisĂ©s pour coder l’information. Les mĂ©canismes de la plateforme unifiĂ©e qui prennent en compte cette interdĂ©pendance sont dĂ©crits. La plateforme a Ă©tĂ© implĂ©mentĂ©e et testĂ©e dans le cadre du projet TRANSFoRm, un projet europĂ©en qui vise Ă  dĂ©velopper un SSA. L’instanciation du modĂšle de mĂ©diation pour le projet TRANSFoRm, le Clinical Data Integration Model est analysĂ©e. Sont aussi prĂ©sentĂ©s ici les rĂ©sultats d’un des cas d’utilisation de TRANSFoRm pour supporter la recherche afin de donner un aperçu concret de l’impact de la plateforme sur le fonctionnement du SSA. Au final, la plateforme unifiĂ©e d’intĂ©gration proposĂ©e ici permet un niveau d’expressivitĂ© suffisant pour les besoins de TRANSFoRm. Le systĂšme est flexible et modulaire et le modĂšle de mĂ©diation CDIM couvre les besoins exprimĂ©s pour le support des activitĂ©s d’un SSA comme TRANSFoRm
    corecore