2,249 research outputs found

    Salivary biomarker development using genomic, proteomic and metabolomic approaches.

    Get PDF
    The use of saliva as a diagnostic sample provides a non-invasive, cost-efficient method of sample collection for disease screening without the need for highly trained professionals. Saliva collection is far more practical and safe compared with invasive methods of sample collection, because of the infection risk from contaminated needles during, for example, blood sampling. Furthermore, the use of saliva could increase the availability of accurate diagnostics for remote and impoverished regions. However, the development of salivary diagnostics has required technical innovation to allow stabilization and detection of analytes in the complex molecular mixture that is saliva. The recent development of cost-effective room temperature analyte stabilization methods, nucleic acid pre-amplification techniques and direct saliva transcriptomic analysis have allowed accurate detection and quantification of transcripts found in saliva. Novel protein stabilization methods have also facilitated improved proteomic analyses. Although candidate biomarkers have been discovered using epigenetic, transcriptomic, proteomic and metabolomic approaches, transcriptomic analyses have so far achieved the most progress in terms of sensitivity and specificity, and progress towards clinical implementation. Here, we review recent developments in salivary diagnostics that have been accomplished using genomic, transcriptomic, proteomic and metabolomic approaches

    Toward a Standardized Strategy of Clinical Metabolomics for the Advancement of Precision Medicine

    Get PDF
    Despite the tremendous success, pitfalls have been observed in every step of a clinical metabolomics workflow, which impedes the internal validity of the study. Furthermore, the demand for logistics, instrumentations, and computational resources for metabolic phenotyping studies has far exceeded our expectations. In this conceptual review, we will cover inclusive barriers of a metabolomics-based clinical study and suggest potential solutions in the hope of enhancing study robustness, usability, and transferability. The importance of quality assurance and quality control procedures is discussed, followed by a practical rule containing five phases, including two additional "pre-pre-" and "post-post-" analytical steps. Besides, we will elucidate the potential involvement of machine learning and demonstrate that the need for automated data mining algorithms to improve the quality of future research is undeniable. Consequently, we propose a comprehensive metabolomics framework, along with an appropriate checklist refined from current guidelines and our previously published assessment, in the attempt to accurately translate achievements in metabolomics into clinical and epidemiological research. Furthermore, the integration of multifaceted multi-omics approaches with metabolomics as the pillar member is in urgent need. When combining with other social or nutritional factors, we can gather complete omics profiles for a particular disease. Our discussion reflects the current obstacles and potential solutions toward the progressing trend of utilizing metabolomics in clinical research to create the next-generation healthcare system.11Ysciescopu

    Enabling Metabolomics Based Biomarker Discovery Studies Using Molecular Phenotyping Of Exosome-like Vesicles

    Get PDF
    Identification of sensitive and specific biomarkers with clinical and translational utility will require smart experimental strategies that would augment expanding the breadth and depth of molecular measurements within the constraints of currently available technologies. Exosomes represent an information rich matrix to discern novel disease mechanisms that are thought to contribute to pathologies such as dementia and cancer. Although proteomics and transcriptomic studies have been reported using Exosomes-Like Vesicles (ELVs) from different sources, exosomal metabolome characterization and its modulation in health and disease remains to be elucidated. Here we describe methodologies for UPLC-ESI-MS based small molecule profiling of ELVs from human plasma and cell culture media. In this study, we present evidence that indeed ELVs carry a rich metabolome that could not only augment the discovery of low abundance biomarkers but may also help explain the molecular basis of disease progression. This approach could be easily translated to other studies seeking to develop predictive biomarkers that can subsequently be used with simplified targeted approaches

    Enabling Metabolomics Based Biomarker Discovery Studies Using Molecular Phenotyping of Exosome-Like Vesicles

    Get PDF
    Identification of sensitive and specific biomarkers with clinical and translational utility will require smart experimental strategies that would augment expanding the breadth and depth of molecular measurements within the constraints of currently available technologies. Exosomes represent an information rich matrix to discern novel disease mechanisms that are thought to contribute to pathologies such as dementia and cancer. Although proteomics and transcriptomic studies have been reported using Exosomes-Like Vesicles (ELVs) from different sources, exosomal metabolome characterization and its modulation in health and disease remains to be elucidated. Here we describe methodologies for UPLC-ESI-MS based small molecule profiling of ELVs from human plasma and cell culture media. In this study, we present evidence that indeed ELVs carry a rich metabolome that could not only augment the discovery of low abundance biomarkers but may also help explain the molecular basis of disease progression. This approach could be easily translated to other studies seeking to develop predictive biomarkers that can subsequently be used with simplified targeted approaches.This work was supported by the Spanish Ministry of Health (RD12/0036/0035), the Spanish Ministry of Economy and Competitivy (PI14/02043), the AECC (Grupos Estables de Investigacion 2011 - AECC- GCB 110333 REVE), the Fundació La Marató TV3 (2/C/2013), the CIRIT Generalitat de Catalunya (2014 SGR 1330) and the European Commission, 7th Framework Programe, IRSES (PROTBIOFLUID –269285) – Belgium. The authors would like to acknowledge the Proteomics and Metabolomics Shared Resource partially supported by Cancer Center Support Grant NIH/NCI grant P30-CA051008

    Metabolomic biomarkers of pancreatic cancer: a meta-analysis study

    Get PDF
    Pancreatic cancer (PC) is an aggressive disease with high mortality rates, however, there is no blood test for early detection and diagnosis of this disease. Several research groups have reported on metabolomics based clinical investigations to identify biomarkers of PC, however there is a lack of a centralized metabolite biomarker repository that can be used for meta-analysis and biomarker validation. Furthermore, since the incidence of PC is associated with metabolic syndrome and Type 2 diabetes mellitus (T2DM), there is a need to uncouple these common metabolic dysregulations that may otherwise diminish the clinical utility of metabolomic biosignatures. Here, we attempted to externally replicate proposed metabolite biomarkers of PC reported by several other groups in an independent group of PC subjects. Our study design included a T2DM cohort that was used as a non-cancer control and a separate cohort diagnosed with colorectal cancer (CRC), as a cancer disease control to eliminate possible generic biomarkers of cancer. We used targeted mass spectrometry for quantitation of literature-curated metabolite markers and identified a biomarker panel that discriminates between normal controls (NC) and PC patients with high accuracy. Further evaluation of our model with CRC, however, showed a drop in specificity for the PC biomarker panel. Taken together, our study underscores the need for a more robust study design for cancer biomarker studies so as to maximize the translational value and clinical implementation.This work was supported by ACS IRG-92-152-17 pilot award number AWD4470404 to KU and AKC. The authors would like to acknowledge the Metabolomics Shared Resource in Georgetown University (Washington DC, USA) partially supported by NIH/NCI/CCSG grant P30-CA05100

    Monitoring cancer prognosis, diagnosis and treatment efficacy using metabolomics and lipidomics

    Get PDF
    Introduction: Cellular metabolism is altered during cancer initiation and progression, which allows cancer cells to increase anabolic synthesis, avoid apoptosis and adapt to low nutrient and oxygen availability. The metabolic nature of cancer enables patient cancer status to be monitored by metabolomics and lipidomics. Additionally, monitoring metabolic status of patients or biological models can be used to greater understand the action of anticancer therapeutics. Objectives: Discuss how metabolomics and lipidomics can be used to (i) identify metabolic biomarkers of cancer and (ii) understand the mechanism-of-action of anticancer therapies. Discuss considerations that can maximize the clinical value of metabolic cancer biomarkers including case–control, prognostic and longitudinal study designs. Methods: A literature search of the current relevant primary research was performed. Results: Metabolomics and lipidomics can identify metabolic signatures that associate with cancer diagnosis, prognosis and disease progression. Discriminatory metabolites were most commonly linked to lipid or energy metabolism. Case–control studies outnumbered prognostic and longitudinal approaches. Prognostic studies were able to correlate metabolic features with future cancer risk, whereas longitudinal studies were most effective for studying cancer progression. Metabolomics and lipidomics can help to understand the mechanism-of-action of anticancer therapeutics and mechanisms of drug resistance. Conclusion: Metabolomics and lipidomics can be used to identify biomarkers associated with cancer and to better understand anticancer therapies

    Discovery of Pancreatic Adenocarcinoma Biomarkers by Untargeted Metabolomics

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers, with a 5-year survival rate of less than 5%. In fact, complete surgical resection remains the only curative treatment. However, fewer than 20% of patients are candidates for surgery at the time of presentation. Hence, there is a critical need to identify diagnostic biomarkers with potential clinical utility in this pathology. In this context, metabolomics could be a powerful tool to search for new robust biomarkers. Comparative metabolomic profiling was performed in serum samples from 59 unresectable PDAC patients and 60 healthy controls. Samples were analyzed by using an untargeted metabolomics workflow based on liquid chromatography, coupled to high-resolution mass spectrometry in positive and negative electrospray ionization modes. Univariate and multivariate analysis allowed the identification of potential candidates that were significantly altered in PDAC patients. A panel of nine candidates yielded excellent diagnostic capacities. Pathway analysis revealed four altered pathways in our patients. This study shows the potential of liquid chromatography coupled to high-resolution mass spectrometry as a diagnostic tool for PDAC. Furthermore, it identified novel robust biomarkers with excellent diagnostic capacities.This research was funded by JUNTA DE ANDALUCIA, grant number PIN-0474-2016 and PC-0549-2017 and INSTITUTO DE SALUD CARLOS III (FEDER), grant number DTS17/00081

    Advances in mass spectrometry-based cancer research and analysis: from cancer proteomics to clinical diagnostics

    Get PDF
    Introduction: The last 20 years have seen significant improvements in the analytical capabilities of biological mass spectrometry. Studies using advanced mass spectrometry (MS) have resulted in new insights into cell biology and the aetiology of diseases as well as its use in clinical applications. Areas Covered: This review will discuss recent developments in MS-based technologies and their cancer-related applications with a focus on proteomics. It will also discuss the issues around translating the research findings to the clinic and provide an outline of where the field is moving. Expert Opinion: Proteomics has been problematic to adapt for the clinical setting. However, MS-based techniques continue to demonstrate potential in novel clinical uses beyond classical cancer proteomics

    The Translational Status of Cancer Liquid Biopsies

    Get PDF
    Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. This can be achieved by leveraging omics information for accurate molecular characterization of tumors. Tumor tissue biopsies are currently the main source of information for molecular profiling. However, biopsies are invasive and limited in resolving spatiotemporal heterogeneity in tumor tissues. Alternative non-invasive liquid biopsies can exploit patient’s body fluids to access multiple layers of tumor-specific biological information (genomes, epigenomes, transcriptomes, proteomes, metabolomes, circulating tumor cells, and exosomes). Analysis and integration of these large and diverse datasets using statistical and machine learning approaches can yield important insights into tumor biology and lead to discovery of new diagnostic, predictive, and prognostic biomarkers. Translation of these new diagnostic tools into standard clinical practice could transform oncology, as demonstrated by a number of liquid biopsy assays already entering clinical use. In this review, we highlight successes and challenges facing the rapidly evolving field of cancer biomarker research. Lay Summary: Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. The discovery of biomarkers for precision oncology has been accelerated by high-throughput experimental and computational methods, which can inform fine-grained characterization of tumors for clinical decision-making. Moreover, advances in the liquid biopsy field allow non-invasive sampling of patient’s body fluids with the aim of analyzing circulating biomarkers, obviating the need for invasive tumor tissue biopsies. In this review, we highlight successes and challenges facing the rapidly evolving field of liquid biopsy cancer biomarker research
    corecore