1,371 research outputs found

    Bioinformatics tools for cancer metabolomics

    Get PDF
    It is well known that significant metabolic change take place as cells are transformed from normal to malignant. This review focuses on the use of different bioinformatics tools in cancer metabolomics studies. The article begins by describing different metabolomics technologies and data generation techniques. Overview of the data pre-processing techniques is provided and multivariate data analysis techniques are discussed and illustrated with case studies, including principal component analysis, clustering techniques, self-organizing maps, partial least squares, and discriminant function analysis. Also included is a discussion of available software packages

    MarVis: a tool for clustering and visualization of metabolic biomarkers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A central goal of experimental studies in systems biology is to identify meaningful markers that are hidden within a diffuse background of data originating from large-scale analytical intensity measurements as obtained from metabolomic experiments. Intensity-based clustering is an unsupervised approach to the identification of metabolic markers based on the grouping of similar intensity profiles. A major problem of this basic approach is that in general there is no prior information about an adequate number of biologically relevant clusters.</p> <p>Results</p> <p>We present the tool MarVis (Marker Visualization) for data mining on intensity-based profiles using one-dimensional self-organizing maps (1D-SOMs). MarVis can import and export customizable CSV (Comma Separated Values) files and provides aggregation and normalization routines for preprocessing of intensity profiles that contain repeated measurements for a number of different experimental conditions. Robust clustering is then achieved by training of an 1D-SOM model, which introduces a similarity-based ordering of the intensity profiles. The ordering allows a convenient visualization of the intensity variations within the data and facilitates an interactive aggregation of clusters into larger blocks. The intensity-based visualization is combined with the presentation of additional data attributes, which can further support the analysis of experimental data.</p> <p>Conclusion</p> <p>MarVis is a user-friendly and interactive tool for exploration of complex pattern variation in a large set of experimental intensity profiles. The application of 1D-SOMs gives a convenient overview on relevant profiles and groups of profiles. The specialized visualization effectively supports researchers in analyzing a large number of putative clusters, even though the true number of biologically meaningful groups is unknown. Although MarVis has been developed for the analysis of metabolomic data, the tool may be applied to gene expression data as well.</p

    *omeSOM: a software for clustering and visualization of transcriptional and metabolite data mined from interspecific crosses of crop plants

    Get PDF
    Background: Modern biology uses experimental systems that involve the exploration of phenotypic variation as a result of the recombination of several genomes. Such systems are useful to investigate the functional evolution of metabolic networks. One such approach is the analysis of transcript and metabolite profiles. These kinds of studies generate a large amount of data, which require dedicated computational tools for their analysis.Results: This paper presents a novel software named *omeSOM (transcript/metabol-ome Self Organizing Map) that implements a neural model for biological data clustering and visualization. It allows the discovery of relationships between changes in transcripts and metabolites of crop plants harboring introgressed exotic alleles and furthermore, its use can be extended to other type of omics data. The software is focused on the easy identification of groups including different molecular entities, independently of the number of clusters formed. The *omeSOM software provides easy-to-visualize interfaces for the identification of coordinated variations in the co-expressed genes and co-accumulated metabolites. Additionally, this information is linked to the most widely used gene annotation and metabolic pathway databases.Conclusions: *omeSOM is a software designed to give support to the data mining task of metabolic and transcriptional datasets derived from different databases. It provides a user-friendly interface and offers several visualization features, easy to understand by non-expert users. Therefore, *omeSOM provides support for data mining tasks and it is applicable to basic research as well as applied breeding programs. The software and a sample dataset are available free of charge at http://sourcesinc.sourceforge.net/omesom/.Fil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; ArgentinaFil: Kamenetzky, Laura. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: López, Mariana. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Lee, Je M.. Cornell University; Estados UnidosFil: Giovannoni, James J.. Cornell University; Estados UnidosFil: Carrari, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentin

    Identification of biomarkers for genotyping Aspergilli using non-linear methods for clustering and classification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the present investigation, we have used an exhaustive metabolite profiling approach to search for biomarkers in recombinant <it>Aspergillus nidulans </it>(mutants that produce the 6- methyl salicylic acid polyketide molecule) for application in metabolic engineering.</p> <p>Results</p> <p>More than 450 metabolites were detected and subsequently used in the analysis. Our approach consists of two analytical steps of the metabolic profiling data, an initial non-linear unsupervised analysis with Self-Organizing Maps (SOM) to identify similarities and differences among the metabolic profiles of the studied strains, followed by a second, supervised analysis for training a classifier based on the selected biomarkers. Our analysis identified seven putative biomarkers that were able to cluster the samples according to their genotype. A Support Vector Machine was subsequently employed to construct a predictive model based on the seven biomarkers, capable of distinguishing correctly 14 out of the 16 samples of the different <it>A. nidulans </it>strains.</p> <p>Conclusion</p> <p>Our study demonstrates that it is possible to use metabolite profiling for the classification of filamentous fungi as well as for the identification of metabolic engineering targets and draws the attention towards the development of a common database for storage of metabolomics data.</p

    MarVis-Filter: Ranking, Filtering, Adduct and Isotope Correction of Mass Spectrometry Data

    Get PDF
    Statistical ranking, filtering, adduct detection, isotope correction, and molecular formula calculation are essential tasks in processing mass spectrometry data in metabolomics studies. In order to obtain high-quality data sets, a framework which incorporates all these methods is required. We present the MarVis-Filter software, which provides well-established and specialized methods for processing mass spectrometry data. For the task of ranking and filtering multivariate intensity profiles, MarVis-Filter provides the ANOVA and Kruskal-Wallis tests with adjustment for multiple hypothesis testing. Adduct and isotope correction are based on a novel algorithm which takes the similarity of intensity profiles into account and allows user-defined ionization rules. The molecular formula calculation utilizes the results of the adduct and isotope correction. For a comprehensive analysis, MarVis-Filter provides an interactive interface to combine data sets deriving from positive and negative ionization mode. The software is exemplarily applied in a metabolic case study, where octadecanoids could be identified as markers for wounding in plants

    Development and Application of Chemometric Methods for Modelling Metabolic Spectral Profiles

    No full text
    The interpretation of metabolic information is crucial to understanding the functioning of a biological system. Latent information about the metabolic state of a sample can be acquired using analytical chemistry methods, which generate spectroscopic profiles. Thus, nuclear magnetic resonance spectroscopy and mass spectrometry techniques can be employed to generate vast amounts of highly complex data on the metabolic content of biofluids and tissue, and this thesis discusses ways to process, analyse and interpret these data successfully. The evaluation of J -resolved spectroscopy in magnetic resonance profiling and the statistical techniques required to extract maximum information from the projections of these spectra are studied. In particular, data processing is evaluated, and correlation and regression methods are investigated with respect to enhanced model interpretation and biomarker identification. Additionally, it is shown that non-linearities in metabonomic data can be effectively modelled with kernel-based orthogonal partial least squares, for which an automated optimisation of the kernel parameter with nested cross-validation is implemented. The interpretation of orthogonal variation and predictive ability enabled by this approach are demonstrated in regression and classification models for applications in toxicology and parasitology. Finally, the vast amount of data generated with mass spectrometry imaging is investigated in terms of data processing, and the benefits of applying multivariate techniques to these data are illustrated, especially in terms of interpretation and visualisation using colour-coding of images. The advantages of methods such as principal component analysis, self-organising maps and manifold learning over univariate analysis are highlighted. This body of work therefore demonstrates new means of increasing the amount of biochemical information that can be obtained from a given set of samples in biological applications using spectral profiling. Various analytical and statistical methods are investigated and illustrated with applications drawn from diverse biomedical areas

    Analysis of large-scale molecular biological data using self-organizing maps

    Get PDF
    Modern high-throughput technologies such as microarrays, next generation sequencing and mass spectrometry provide huge amounts of data per measurement and challenge traditional analyses. New strategies of data processing, visualization and functional analysis are inevitable. This thesis presents an approach which applies a machine learning technique known as self organizing maps (SOMs). SOMs enable the parallel sample- and feature-centered view of molecular phenotypes combined with strong visualization and second-level analysis capabilities. We developed a comprehensive analysis and visualization pipeline based on SOMs. The unsupervised SOM mapping projects the initially high number of features, such as gene expression profiles, to meta-feature clusters of similar and hence potentially co-regulated single features. This reduction of dimension is attained by the re-weighting of primary information and does not entail a loss of primary information in contrast to simple filtering approaches. The meta-data provided by the SOM algorithm is visualized in terms of intuitive mosaic portraits. Sample-specific and common properties shared between samples emerge as a handful of localized spots in the portraits collecting groups of co-regulated and co-expressed meta-features. This characteristic color patterns reflect the data landscape of each sample and promote immediate identification of (meta-)features of interest. It will be demonstrated that SOM portraits transform large and heterogeneous sets of molecular biological data into an atlas of sample-specific texture maps which can be directly compared in terms of similarities and dissimilarities. Spot-clusters of correlated meta-features can be extracted from the SOM portraits in a subsequent step of aggregation. This spot-clustering effectively enables reduction of the dimensionality of the data in two subsequent steps towards a handful of signature modules in an unsupervised fashion. Furthermore we demonstrate that analysis techniques provide enhanced resolution if applied to the meta-features. The improved discrimination power of meta-features in downstream analyses such as hierarchical clustering, independent component analysis or pairwise correlation analysis is ascribed to essentially two facts: Firstly, the set of meta-features better represents the diversity of patterns and modes inherent in the data and secondly, it also possesses the better signal-to-noise characteristics as a comparable collection of single features. Additionally to the pattern-driven feature selection in the SOM portraits, we apply statistical measures to detect significantly differential features between sample classes. Implementation of scoring measurements supplements the basal SOM algorithm. Further, two variants of functional enrichment analyses are introduced which link sample specific patterns of the meta-feature landscape with biological knowledge and support functional interpretation of the data based on the ‘guilt by association’ principle. Finally, case studies selected from different ‘OMIC’ realms are presented in this thesis. In particular, molecular phenotype data derived from expression microarrays (mRNA, miRNA), sequencing (DNA methylation, histone modification patterns) or mass spectrometry (proteome), and also genotype data (SNP-microarrays) is analyzed. It is shown that the SOM analysis pipeline implies strong application capabilities and covers a broad range of potential purposes ranging from time series and treatment-vs.-control experiments to discrimination of samples according to genotypic, phenotypic or taxonomic classifications
    corecore